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Artificial intelligence-augmented additive manufacturing (AI2AM) represents a
transformative frontier in digital fabrication, where artificial intelligence (Al) is
embedded not as a peripheral tool, but as a central framework driving intelligent,
adaptive, and autonomous additive manufacturing (AM) systems. The objective of
this Roadmap is to present a comprehensive vision of the state-of-the-art devel-
opments in AI2AM while charting the future trajectory of this rapidly emerging field.
As AM applications continue to expand across diverse sectors, conventional design
and control strategies face growing limitations in scalability, quality assurance, and
material complexity. Al uses tools like computer vision, generative design, and large
language models to help solve problems in scalability, quality assurance, and
material complexity, allowing for real-time defect detection, digital twin integration,
and closed-loop process control. This roadmap brings together leading contribu-
tions from twenty internationally recognized research groups by uniting perspec-
tives from materials science, computer science, robotics, and manufacturing. This
work aims to create a cohesive framework for advancing AI2AM as a multidisci-
plinary science. The ultimate intent of this work is to establish a foundation for
coordinated research and innovation in Al-powered AM and to serve as a strategic
entry point for future breakthroughs in autonomous and sustainable production.

1. Introduction to Roadmap

Ali Zolfagharian, Mahdi Bodaghi

Additive manufacturing (AM) has rapidly
transitioned from a prototyping tool to a
disruptive platform for the fabrication of
complex, customized, and high-performing
components  across  several  sectors,
including aerospace and automotive,™
health,”) and construction.””’ The techni-
ques—encompassing material extrusion,
vat photopolymerization,”! powder bed
fusion, directed energy deposition,” and
binder jetting® —provide distinct benefits
in design flexibility, material efficiency,
and functional integration. Recently, some
or combinations of these processes have
been progressively enhanced by artificial
intelligence (AI),””! facilitating more intelli-
gent slicing algorithms, generative design,
instantaneous fault detection, adaptive print-
ing process control, and efficient post-
processing techniques. The integration of
AM and Al is establishing the groundwork
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for advanced, autonomous, and closed-loop manufacturing sys-
tems, thereby facilitating the artificial intelligence-augmented addi-
tive manufacturing (AI2AM) roadmap presented in this article.

The AI2AM represents a strategic evolution in the field of dig-
ital manufacturing, where Al is not merely a tool for automation,
but an integral framework for enhancing every stage of the AM
process.'” As AM technologies continue to mature, the
demands for greater complexity, material diversity, real-time
quality assurance, and sustainability have outpaced traditional
approaches. Al offers the computational power, adaptability,
and predictive capability to overcome these bottlenecks—
transforming AM into a more intelligent, autonomous, and
responsive production ecosystem.

The growing adoption of AM across industries such as aero-
space, biomedical, energy, and consumer products has exposed
significant challenges: process variability, limited design flexibil-
ity, inconsistent mechanical properties, and lack of real-time con-
trol. AI2AM addresses these challenges by enabling intelligent
design generation, data-driven process optimization, anomaly

www.advintellsyst.com

detection, digital twin (DT) integration,!'’! and adaptive control
systems. By leveraging machine learning (ML), computer vision
(CV), generative design, and reinforcement learning (RL),
researchers and practitioners are redefining how parts are
designed, fabricated, and evaluated in real time."2**!

However, the integration of Al into AM is inherently complex
and multidisciplinary. It draws on fields as diverse as materials
science, computer science, robotics, manufacturing engineering,
and data analytics. As different research groups and industries
explore AI2AM through their own lenses—be it algorithm devel-
opment, hardware innovation, or material characterization—
there is a pressing need for a unifying framework to coordinate
efforts, highlight synergies, and chart future directions. This
roadmap is a direct response to that need. It brings together
the collective insights of over ten internationally recognized
research groups, each contributing to a distinct aspect of the
AI2AM landscape. These include Al-guided design of complex
structures and metamaterials, data-driven materials discovery,
adaptive control of AM systems, generative Al in creative
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manufacturing, and the development of collaborative AI2AM
platforms. The roadmap is a strategic call to action for research-
ers, developers, and industry stakeholders to shape the next gen-
eration of manufacturing innovation.

The contributions outlined in this roadmap provide a compre-
hensive and forward-looking vision for how Al can fundamen-
tally enhance the flexibility, efficiency, and intelligence of AM
strategies and products. They reflect a shared commitment to
building a global, cross-disciplinary community that will drive
innovation, establish standards, and unlock new opportunities
for Al-powered design and fabrication. In the following section,
we Dbriefly introduce each of the roadmap topics under three
themes, as listed in Table 1, and highlight the core focus of each
contributing research group.

Theme I: Design and Strategies

The sections within “Theme I: Design and Strategies” collectively
illustrate how Al is reshaping the front end of AM, moving from
material-aware optimization to creativity-driven ideation and
intelligent process planning. Section 2 shows how Al-augmented
multimaterial design provides computational intelligence to
manage voxel-level complexity that exceeds the capacity of tradi-
tional topology optimization. Section 3 builds on this foundation
by demonstrating how generative Al expands design freedom by
enabling early conceptual exploration of geometries and struc-
tures. Section 4 extends Al advances into the fabrication domain,
where Al-driven multiaxis strategies reduce support dependency,
align deposition paths with stress trajectories, and improve over-
all structural performance. Section 5 highlights the integration of

Table 1. The list of topics and authors in this roadmap.
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Al into advanced material design and processing, showing how
ML and hybrid modeling link microstructural evolution to mac-
roscale performance, thereby tailoring functionality at multiple
scales. Finally, Section 6 introduces synergies between genera-
tive Al and AM ontologies, which ensure that creative design out-
puts remain context-aware, manufacturable, and aligned with
formalized engineering knowledge. Overall, these sections move
progressively from material-level intelligence through generative
creativity and multiaxis processing, culminating in a semantic
framework that unifies creativity, manufacturability, and func-
tionality under Al-enabled strategies in AM.

Al-Augmented Multimaterial Design in AM

The section on Al-augmented multimaterial design in AM
explores how Al is transforming the design of components that
incorporate two or more materials within a single print pro-
cess.'"* From early dual-extrusion polymer systems to modern
platforms capable of combining metals, ceramics, and functional
polymers, multimaterial additive manufacturing (MMAM) has
become essential for engineering spatially tailored properties
in aerospace, biomedical, and soft robotic applications.>*!
However, MMAM poses significant challenges beyond those
encountered in single-material AM—such as managing inter-
material compatibility, addressing multiphysics behavior, and
optimizing conflicting performance goals. Traditional design
tools like topology optimization often fall short in this context
due to their assumptions of continuous material distributions,
while MMAM typically involves discrete, voxel-based design with
complex thermal and mechanical interactions. This section

Section No. Title

Authors

1 Introduction to Roadmap

Theme |I: Design and Strategies

Ali Zolfagharian, Mahdi Bodaghi

2 Al-Augmented Multi-Material Design in Additive Manufacturing Liuchao Jin, Qi Ge, Wei-Hsin Liao

3 Generative Al for supporting creativity and design for AM Andrés Diaz Lantada, Francisco Franco Martinez
4 Al-Driven Multi-Axis Additive Manufacturing Tianyu Zhang, Tao Liu, Charlie C.L. Wang

5 Al-Powered Strategies for Smart Design and Processing in Advanced Mohammad Hossein Mosallanejad, Reza Ghanavati,

Material Additive Manufacturing

6 Synergies between Generative Als and AM Ontologies

Theme |I: Monitoring and Quality Control

Abdollah Saboori

Alejandro De Blas-De Miguel, William Solérzano-Requejo

7 Digital Twin in Additive Manufacturing Yi Cai, Xiangyang Dong, Huangyi Qu

8 Al for Online Monitoring and Defect Detection in AM Najmeh Samadiani, Guangyan Huang

9 Real-time Al-driven Structural Validation for Additive Manufacturing Austin Downey, Yanzhou Fu, Lang Yuan

10 Computer Vision-based Al in Additive Manufacturing Tsz-Kwan (Glory) Lee, Arbind Agrahari Baniya, Eisha Waseem

1 Al-Controlled Closed-loop 3D/4D Printing Abdul Rahman Sani, Abbas Z Kouzani, Ali Zolfagharian

Theme I1I: Product Developments

12 Al for Soft Robotic Additive Manufacturing Yijia Wu, Markus P. Nemitz

13 Al-driven Design of Meta-scaffolds Masoud Shirzad, Dageon Oh, Seung Yun Nam

14 Al-Enhanced Development of 3D Bioprinting Amedeo Franco Bonatti, Irene Chiesa, Gabriele Maria Fortunato,
Giovanni Vozzi, Carmelo De Maria

15 Adaptive Metamaterials by Al and 4D Printing Mahdi Bodaghi
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highlights how Al-driven approaches—particularly hybrid mod-
els that blend physics-based simulation with ML—are enabling
designers to navigate this complexity with greater efficiency.

Generative Al for Supporting Creativity and
Design in AM

The generative Al is emerging as a powerful enabler of creativity
in the design process, particularly in the early, conceptual
stages of innovation for AM. Building on design for additive
manufacturing (DfAM) principles,'®? which leverage AM’s
unique capabilities like complex geometries, multimaterial inte-
gration, and smart or living materials, generative Al tools now
allow designers to create novel shapes and structures by simply
providing textual prompts or images. This democratizes design
exploration, enabling rapid generation of complex, bioinspired,
and highly customized geometries that would be difficult or
impossible to conceptualize through traditional CAD tools alone.
Early experiments show promising applications in biomaterials
design, artistic-technical integration, and accelerating cross-
disciplinary discovery. Although challenges remain—particularly
in achieving ready-to-print models that incorporate lattice struc-
tures, functional gradients, and optimized topologies directly
from generative outputs—the trajectory points toward a future
where design is seamlessly Al-generated, automatically validated,
and materialized through AM, fundamentally reshaping the pace
and scope of product innovation.

Al-Driven Multiaxis AM

The section on Al-driven multiaxis AM explores how the integra-
tion of Al is unlocking new possibilities in multiaxis 3D printing,
overcoming the geometric and mechanical limitations of conven-
tional layer-by-layer fabrication. Traditional AM systems, restricted
by three-axis motion, struggle with surface roughness, inefficient
support structures, and limited mechanical optimization due
to fixed material deposition directions. Al-enhanced multiaxis
printing introduces rotational and tilting motions, enabling near
support-free fabrication and aligning material deposition along
principal stress paths for superior mechanical performance.?*~>!
Compared to traditional slicers, Al-powered solutions reduce
reliance on high-quality meshes and enhance adaptability across
diverse printing tasks. While challenges such as accurate aniso-
tropic stress prediction, mesh resolution dependency, and collision
detection persist, ongoing research points toward integrating
anisotropic modeling, adaptive meshing, and reinforcement-
learning-driven motion planning for safer, more robust, and
high-performance multiaxis AM. These advancements position
Al-driven multiaxis printing as a transformative capability for pro-
ducing intricate components with reduced manufacturing waste.

Al-Powered Strategies for Smart Design and
Processing in Advanced Material AM

Al-powered strategies are transforming the design and process-
ing of advanced materials in AM, enabling the creation of
complex, multimaterial components with tailored functionalities

Adv. Intell. Syst. 2026, €202500484 €202500484 (4 of 54)
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for demanding sectors such as aerospace, biomedical, and auto-
motive.””! Traditional techniques like welding and powder met-
allurgy often fall short when addressing intricate geometries and
interface challenges, whereas AM combined with Al offers a
powerful alternative by optimizing material combinations, pre-
dicting interface behavior, and enhancing process control. ML
algorithms and multiscale physical models provide data-driven
insights into how process parameters influence composition,
microstructure, and performance, accelerating the development
of functionally graded materials (FGMs) and site-specific prop-
erty tuning. Emerging approaches such as computational alloy-
ing and digital metallurgy further enable real-time adaptation of
processing conditions for each material zone.'>"*! Despite these
advancements, challenges in material compatibility, interfacial
bonding, and scalability persist, highlighting the need for contin-
ued innovation in ML frameworks and hybrid modeling. This
convergence of AT and AM marks a critical leap toward intelligent
manufacturing systems capable of producing next-generation
smart components at scale.

Synergies between Generative Als and AM
Ontologies

The section on synergies between generative Al and AM ontologies
highlights the powerful convergence of formal semantic structures
and Al-driven creativity to enhance the design and manufacturing
processes in AM, particularly for personalized medical devices.
Ontologies provide a structured framework to integrate complex
clinical, technical, and material data, ensuring quality and biocom-
patibility while identifying design flaws early.””**) When combined
with generative Al, these ontologies guide Al systems to make
context-aware decisions grounded in established knowledge bases.
This synergy enables more intelligent design workflows where Al
not only generates creative design variations but does so within
defined material, geometric, and functional constraints, improving
both efficiency and accuracy.”®!! As this integration advances, it
necessitates a shift in engineering practice, moving from tradi-
tional CAD operations to prompt-based interactions with Al sys-
tems. This evolution is crafting a new design formalism that
blends natural language, symbolic precision, and taxonomical clar-
ity, paving the way for more accessible, innovative, and high-
performance AM across multiple industries.

Theme II: Monitoring and Quality Control

The sections under “Theme II: Monitoring and Quality Control”
demonstrate how AI enables AM systems to evolve intelligent
manufacturing pipelines. Section 7 introduces DTs as dynamic,
data-driven replicas that bridge physical AM processes with their
virtual counterparts, creating a foundation for defect detection
and process optimization. Building on this, Section 8 focuses
on Al for online monitoring and defect detection, where multi-
modal sensor data—acoustic, thermal, and visual—is processed
by hybrid AI models to identify defects in real time, reducing
waste and enhancing scalability. Section 9 advances this concept
toward real-time Al-driven structural validation, enabling safety-
critical parts to be evaluated during fabrication rather than
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post-production, a crucial step for aerospace and biomedical
applications. Section 10 highlights the role of CV-based AI, which
adds spatial and geometric context to AM, detecting surface incon-
sistencies while enhancing DT fidelity. Finally, Section 11 con-
cludes in Al-controlled closed-loop 3D/4D printing, integrating
sensing, analysis, and actuation into autonomous feedback loops
that self-correct during manufacturing. Together, these
sections present a coherent progression: from digital replicas
and sensor-driven defect detection to structural validation, visual
intelligence, and ultimately, autonomous closed-loop control—
collectively redefining monitoring and quality assurance in AM.

DT in AM

DT technology is revolutionizing AM by enabling real-time,
data-driven virtual replicas of physical printing systems and pro-
cesses."l Tt provides a dynamic, bi-directional link between
physical AM equipment and their digital counterparts, allowing
continuous monitoring, simulation, and adaptive control. In AM,
DTs facilitate predictive maintenance, process optimization,
and defect detection through integration with sensor data
and Al algorithms.*? This empowers manufacturers to reduce
downtime, enhance part quality, and improve scalability. With
Al-enhanced DTs, AM systems gain the ability to autonomously
interpret complex data, predict failures, and optimize print
parameters in real-time. While challenges remain in data integra-
tion, standardization, and system interoperability, ongoing
advances in AI, information technology (IT) infrastructure,
and DT frameworks are rapidly advancing the field, positioning
Al-driven DTs as key enablers of sustainable manufacturing.

Al for Online Monitoring and Defect Detection
in AM

The section on Al for online monitoring and defect detection in
AM highlights the critical role of Al in enabling real-time quality
assurance across diverse AM processes. Defects such as porosity,
surface inconsistencies, and delamination can significantly com-
promise part performance, making early detection essential.'”
Al-enhanced monitoring systems use sensor data—ranging
from acoustic signals and thermal images to CV streams—to
identify defects during the printing process. While no single
method is universally applicable due to variations in materials,
processes, and defect mechanisms, tailored AI models have
demonstrated success in wire arc, laser-based, and extrusion-
based AM.P?! Recent developments integrate ML with physics-
informed neural networks (PINNs), large language models
(LLMs), and generative Al for data augmentation and robust pre-
diction.** These hybrid approaches address challenges like data
scarcity, model generalization, and limited annotated datasets,
while federated and adaptive learning strategies ensure scalable
and privacy-preserving deployment. As the field progresses, com-
prehensive Al frameworks are being developed to unify detec-
tion, localization, and process feedback—paving the way for
cost-effective, scalable, and real-time defect detection systems
across industrial AM platforms.

Adv. Intell. Syst. 2026, €202500484 €202500484 (5 of 54)
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Real-Time Al-Driven Structural Validation for
AM

The section on real-time Al-driven structural validation for AM
emphasizes the transformative potential of integrating Al into
in situ validation processes, enabling printed components to
be assessed for structural integrity in real time during fabrica-
tion. This advancement could shift AM from a prototyping tool
to a reliable production method for safety-critical parts, especially
in aerospace and automotive sectors. Traditional structural vali-
dation relies heavily on post-processing inspections and simula-
tions, which are time-consuming and costly. AI2AM offers a
solution by combining data-driven defect detection with physics-
based modeling in a hybrid framework."*?>¢! These innova-
tions allow Al systems to make immediate decisions about part
integrity during printing, drastically reducing downtime and
material waste.

CV-Based Al in AM

The section on CV-based Al in AM highlights how the integra-
tion of CV into AM systems is revolutionizing the precision,
adaptability, and intelligence of AM processes.’”) By providing
spatial and geometric context, CV enables AM systems to detect
surface inconsistencies, layer misalignments, and structural dis-
tortions in real time, thus directly improving product quality and
process reliability. Evolving from early offline quality control
using red, green, and blue (RGB) and thermal imaging to today’s
real-time, Al-enhanced visual analytics, CV has become a core
sensing modality within DT frameworks for AM. This conver-
gence of CV and Al empowers AM platforms to function as intel-
ligent, self-adaptive systems capable of optimizing production
workflows, reducing material waste, and supporting broader
application across diverse industries.

Al-Controlled Closed-Loop 3D/4D Printing

Al-based closed-loop 3D/4D printing marks a pivotal advance-
ment in AM by integrating real-time sensing, intelligent analysis,
and autonomous process control into a unified system. Unlike
traditional open-loop printing, which operates on pre-defined
parameters, closed-loop systems employ sensors, such as acous-
tic, thermal, and vision-based devices, to continuously monitor
print quality during fabrication."” These data streams are proc-
essed using Al algorithms capable of detecting anomalies like
layer misalignment, nozzle blockage, or material flow inconsis-
tencies. An intelligent feedback loop allows dynamic adjustments
to critical parameters such as extrusion rate, temperature, and
speed in response to detected deviations, thereby ensuring part
integrity and reducing waste. In 4D printing applications, where
time-dependent shape transformation adds another layer of com-
plexity, Al-driven control is especially crucial for maintaining
actuation performance and functional accuracy.?** While cur-
rent implementations are primarily experimental, ongoing
advancements in AI model robustness and sensor fidelity are
rapidly pushing this paradigm toward industrial deployment.
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Theme IlI: Product Developments

The sections under “Theme III: Product Developments” highlight
how Al is driving the transition of AM from a platform for pro-
totyping to next-generation product innovation across multiple
domains. Section 12 illustrates how Al is addressing fabrication
challenges in soft robotic AM by detecting and correcting print
defects in elastomeric materials, enabling cost-effective and reli-
able production of compliant robotic systems for applications
ranging from healthcare to space exploration. Section 13 builds
on this by focusing on Al-driven design of meta-scaffolds, where
ML enables rapid optimization of biomimetic tissue-engineering
architectures that balance mechanical integrity with biological
function, paving the way for personalized regenerative medicine.
Section 14 extends these insights into Al-enhanced development
of 3D bioprinting, where Al streamlines bioink selection, opti-
mizes printing parameters, and enforces automatic quality control
across pre-, in-, and post-process stages to improve reproducibility
and scalability toward clinical translation. Finally, Section 15
explores adaptive metamaterials enabled by Al and 4D printing,
which combine stimuli-responsive materials with Al-driven
modeling and real-time control to achieve programmable and
multifunctional performance across diverse sectors. Collectively,
these sections demonstrate a progression from soft robotic com-
ponents and tissue-engineered scaffolds to biologically functional
constructs and intelligent metamaterials, with Al serving as the
unifying enabler.

Al for Soft Robotic AM

The section on AI for soft robotic AM explores how Al
can address the unique fabrication challenges of soft robotics,
a field that utilizes compliant, elastomeric materials to create
robots capable of safe and adaptive interaction with dynamic
environments. Unlike traditional rigid robots, soft robots are
increasingly produced as monolithic systems via AM, aligning
with the paradigm of physical intelligence, where the robot’s
form and material composition contribute to its behavior.**!
However, the soft, deformable nature of these materials makes
them especially vulnerable to print defects that can compromise
performance, such as leaks in pneumatic actuators.*® AT offers
transformative solutions by enabling automated detection and
correction of such defects, optimizing slicer settings, geometry,
and print parameters based on material behavior and functional
requirements. Al-driven pipelines embedded into design and
slicing software could proactively adapt fabrication strategies
to printer capabilities and environmental conditions, ensuring
repeatable and robust soft robotic systems. These advancements
will be key to enabling cost-effective, high-performance soft
robotics for applications in healthcare, agriculture, emergency
response, and space exploration.

Al-Driven Design of Meta-Scaffolds

The section on Al-driven design of meta-scaffolds highlights how
Al is transforming the development of architected tissue engi-
neering scaffolds, known as meta-scaffolds, which are designed
to replicate the complex mechanical and biological functions of
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human tissues.**! These structures must simultaneously sup-
port cell adhesion, mechanical loading, and nutrient transport,
requiring intricate internal architectures that conventional
design methods struggle to generate efficiently.****! AI and
ML approaches offer a powerful solution by enabling rapid explo-
ration and optimization of scaffold designs based on large data-
sets, bypassing the limitations of traditional simulation methods
like finite element analysis (FEA). By learning from targeted
properties and performance criteria, AI models can predict
and generate scaffold architectures that are biomimetic, structur-
ally robust, and biologically functional. Despite ongoing chal-
lenges, such as the need for large, high-quality datasets, limited
biomaterial options, and fabrication resolution constraints,
Al-driven strategies are paving the way for next-generation,
patient-specific scaffolds in regenerative medicine.

Al-Enhanced Development of 3D Bioprinting

The integration of Al into 3D bioprinting is accelerating the
development of tailored bioinks and processes that ensure both
optimal biological compatibility and printability, addressing crit-
ical challenges in the fabrication of functional tissues and organ
constructs.*Y Bioprinting technologies like extrusion-based bio-
printing (EBB), inkjet bioprinting (IJB), and light-assisted bio-
printing (LAB) have demonstrated potential across tissue
engineering and in vitro modeling, yet they still face limitations
in quality control and reproducibility. Al-driven approaches are
transforming this landscape by enabling intelligent material
screening, predictive process optimization, and real-time quality
assurance.*>*% Pre-process Al models streamline the selection
of bioinks and fine-tune printing parameters, reducing the reli-
ance on trial-and-error methods. During printing, Al-enhanced
in-process monitoring systems utilize sensor data to detect
anomalies and maintain print fidelity in real time. Post-process,
Al models such as convolutional neural networks (CNNs) and
generative adversarial networks (GANs) automatically assess
the biological quality of printed constructs, analyzing cell viabil-
ity, morphology, and proliferation patterns from microscopy
images. These advancements collectively enhance the reliability,
precision, and scalability of bioprinting, moving the field closer
to clinical translation and opening new horizons for personalized
regenerative medicine and tissue-engineered implants.

Adaptive Metamaterials by Al and 4D Printing

The section on adaptive metamaterials by Al and 4D printing
captures how the fusion of Al with 4D printing is unlocking a
new class of intelligent, programmable materials capable of com-
plex, adaptive responses to external stimuli.*’**®! Mechanical
metamaterials, designed with architected unit cells and respon-
sive materials like shape memory polymers and liquid crystal
elastomers, enable functionalities such as tunable stiffness,
shape-shifting, and energy absorption across sectors like aero-
space, robotics, and impact protection. However, the inherent
complexity of multistimulus actuation, nonlinear behaviors,
and intricate geometries presents significant design and process
optimization challenges. As research advances, this convergence
promises a new paradigm of adaptive, multifunctional

© 2026 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

61017 SUOLLLIOD BATEBID) 3[edljdde aU) Aq PouBA 918 SPILE YO ‘88N J0S3INI 10} AIRIGIT BUIIUO AB| 1AM O (SUONIPUOD-PUE-SWLBILICY" A3 1M ARG 1B UO//STNY) SUOIIPUOD PUe SWLR 1 3U) 39S *[9202/20/£0] U0 ARIq1 auliuo A3 11A 21 IENRLRIL0D A 187005202 ASIE/Z00T OT/10p/00 A3 | I Aei 1 pUIJUO'PROURADE, /ST WOJ) PBPeOIUMOQ ‘0 *£9GHOY9Z


http://www.advancedsciencenews.com
http://www.advintellsyst.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

metamaterials that can evolve with their use, paving the way for
sustainable, high-performance solutions across industries from
aerospace to healthcare.

2. Al-Augmented Multimaterial Design in AM

Liuchao Jin, Qi Ge”, Wei-Hsin Liao"

2.1. State of the Art

MMAM has evolved from early experiments with dual-extrusion
polymers in the 2000s to present-day sophisticated systems capa-
ble of depositing metals, ceramics, and functional polymers
within a single build." This growth has been driven by rising
demand for components with spatially engineered properties—
aerospace turbines with gradient thermal barriers, biomedical
implants with bone stiffness gradients, and soft robots with
elastomer-metal hybrids for adaptive locomotion. However,
the field was faced with a fundamental bottleneck: conventional
trial-and-error design methods could not efficiently explore the
vast and complex material-process-structure relationships inher-
ent in MMAM.

Compared to single-material AM, MMAM introduces addi-
tional challenges due to the discrete nature of material place-
ment, complex interactions between different materials, and
the necessity of optimizing multiple competing objectives simul-
taneously. Traditional topology optimization (TO), which has
been widely applied in single-material design, struggles with
MMAM because it assumes a continuous distribution of materi-
als. In contrast, multimaterial designs often involve discrete
voxel-based arrangements and multiphysics considerations, such
as thermal expansion mismatches, which further complicate the
optimization process.

Recent advances in Al-driven design tools have been a game-
changer™ ¥ in enabling the exploration of combinations of
materials, geometric architectures, and process variables to
achieve functional coherence. ML-based approaches, such as evo-
lutionary algorithms and neural networks, have started to bridge
the gap by navigating the high-dimensional design space of
MMAM, allowing for the automated discovery of optimal mate-
rial layouts and fabrication parameters. The Al-driven multima-
terial design in AM has led to the development of two
approaches: parameter-based optimization and voxel-based opti-
mization (Figure 1).

Parameter-based optimization aims at optimizing process and
design variables (Figure 1), such as material ratios,*”! layer allo-
cation,% and process parameters (e.g., laser power, print speed,
and temperature).”” Such methods generally utilize gradient-
based optimization techniques and surrogate modeling to search
high-dimensional design spaces for optimal performance at low
computational cost.

Voxel-based optimization, however, investigates a smaller scale
in that it optimizes at the voxel (3D pixel) level of the microstruc-
ture (e.g., the pixel hand of Figure 1). Nongradient-based optimi-
zation techniques like evolutionary algorithms and generative
neural networks are usually employed for this method. Voxel-
based techniques can both design and optimize FGMs or
structures with specialized mechanical properties in different

Adv. Intell. Syst. 2026, €202500484 €202500484 (7 of 54)

www.advintellsyst.com

Figure 1. Schematic diagram illustrating the Al-augmented multimaterial
design framework and methods in AM.

regions of the part. Assisted by Al algorithms, this method can
potentially automate the design of multimaterial structures with
optimized internal and external properties. These range from
mechanical properties like modulus,® toughness (Figure 2a,
b),”*>%) and stress—strain fields (Figure 2c)**°® to dynamic
behaviors like 4D printing (Figure 2d,e),">™"® deformed shape
after loading*® soft robots with programmable actuation
sequences.>*

The intersection of these Al techniques is revolutionizing
MMAM workflows. Further advancement of Al-based MMAM
is hyped to radically enhance the efficiency of developing com-
plex material systems. Through Al algorithms, the design can be
automated, so as to enable the design of materials and compo-
nents with target properties to achieve desired performance
requirements. Such automation not only accelerates the develop-
ment process but also allows one to explore a greater design
space, coming to innovative solutions that would be impossible
with traditional approaches.

2.2. Scientific Challenges and Technical Limitations

The integration of Al into MMAM design faces three main chal-
lenges: complex material interactions at interfaces, AI model
inaccuracy, and computational scalability limitations.

The first challenge is the complicated interfacial behavior
between dissimilar materials for the multimaterial system gen-
erated by AM. In AM processes, different materials—e.g., metal-
polymer, ceramic-polymer, and even intra-system hybrids (e.g.,
soft-rigid polymer blends)—interact dynamically under spatially
and temporally varied thermal, mechanical, and chemical condi-
tions. These interactions produce localized phenomena, includ-
ing residual stress accumulation, interfacial delamination,
microcracking, and mechanical property degradation due to con-
tamination, particularly at boundaries where thermally and
mechanically mismatched properties (e.g., thermal expansion
coefficients, elastic moduli) exist. Classical homogenized mod-
els, which average material properties across interfaces, fail to
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Figure 2. Overview of research in Al-enhanced multimaterial DfAM. a) Bioinspired, hierarchical composite developed by integrating ML with simulation
and experimental AM. Reproduced with permission.”®! Copyright 2018, the Royal Society of Chemistry; b) A computational strategy for discovering
microstructured composites that achieve an optimal balance between stiffness and toughness. Reproduced with permission.”>! Copyright 2024,
The American Association for the Advancement of Science; c) A ML approach for inverse design of complex stress and strain distributions in hierarchical
composite materials. Reproduced with permission.*® Coyright 2025, Elsevier; d) An Al-enabled framework for forward prediction and inverse design
in the design of active, 4D-printed plates. Reproduced with permission."® Copyright 2024, Springer Nature; and e) A ML-based method for forward
prediction and inverse design applied to 4D-printed hierarchical architectures with arbitrary geometries. Reproduced with permission.!'® Copyright 2024,
Elsevier.
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resolve such complex localized effects. While data-driven Al
approaches are promising, they exhibit limited generalizability
due to sparse experimental datasets and the absence of integra-
tion with physical principles.

Additionally, another key challenge is the difficulty in reconcil-
ing Al-based predictions with real manufacturing outcomes due to
insufficient training data, manufacturing uncertainties, and
incomplete physics modeling. Although Al-driven tools excel at
optimizing material distributions, topologies, and functional prop-
erties in silico, discrepancies persist between theoretical predic-
tions and physical prints. One major limitation comes from the
scarcity of high-quality, diverse datasets required to train Al mod-
els effectively. Given the vast design space and complex interac-
tions in MMAM, existing datasets often fail to capture the full
range of material behaviors, leading to suboptimal predictions
when encountering new material combinations or processing con-
ditions. Besides, the translation of Al-powered designs into physi-
cal parts is also hindered by process-induced uncertainties
inherent to AM. These include instability of nozzle flow in multi-
material extrusion, powder bed inhomogeneity in laser-based sys-
tems, and thermal gradient-driven warping, all of which introduce
deviations between computational predictions and as-printed out-
comes. Furthermore, incomplete physics modeling remains a crit-
ical issue, as many Al-based approaches rely on approximations or
surrogate models that do not fully account for multiscale interac-
tions between materials, processing parameters, and environmen-
tal factors. Such discrepancies arise not only from fundamental
errors in manufacturing the designs but also from the current lim-
itations of Al models in fully capturing the complex, interdepen-
dent material-process-structure relationships. Moreover, this
discrepancy will be magnified by the lack of rigorous validation
of Al-enhanced MMAM designs under conditions more stringent
than controlled laboratory settings. A majority of published advan-
cesP** are developed through simplified bench-validated compo-
nents (e.g., simplified geometries or uniaxial tensile bars) in
replace of industrially relevant components with complex load,
environmental variation, or prolonged durability issues. Absent
stringent real-world verification in the form of, for instance,
fatigue testing, environmental exposure (thermal cycling, humid-
ity), and in situ monitoring in service environments, the usability
of dominant methods remains uncertain.

Finally, the computational burden of high-resolution multima-
terial design is also a challenge.>™® When designing FGMs or
optimizing voxel-level material gradients, it is essential to perform
microscale simulations that capture the fine compositional and
structural heterogeneity intrinsic to these systems. Such detailed
simulations require extensive computational resources—both in
terms of memory and processing power—which can become pro-
hibitively expensive. FEA of such systems becomes intractable for
macroscale components, while Al-driven methods face scalability
limitations when processing high-dimensional 3D voxel grids.
These constraints compel reliance on reduced-order approxima-
tions, which trade resolution for computational feasibility.

2.3. Scientific Pathways and Technological Developments

Advances in science and technology to overcome the difficulties
of Al-accelerated multimaterial design for AM are progressing in
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three complementary directions. First, hybrid physics—AlI frame-
works can be developed to integrate fundamental physical mod-
els with ML algorithms. These frameworks take advantage of the
predictive power of classical mechanistic models and the
data-driven adaptability of Al for more realistic simulations of
interfacial phenomena and other localized effects neglected by
conventional homogenized models. By incorporating physical
constraints into deep learning (DL) architectures, the limitations
posed by sparse experimental datasets and nonlinearity in
material-process—structure relationships can be overcome.

Second, autonomous experimentation platforms are revolu-
tionizing the design process by combining real-time manufactur-
ing systems with high-throughput test systems.*”! These
platforms enable iterative, closed-loop testing and optimization,
and can dramatically reduce the time required for process param-
eter optimization. With autonomous feedback, Al systems are
able to adjust experimental protocols in real time by optimizing
material compositions and geometric designs to achieve target
performance specifications with minimal human intervention.

Third, the development of DTs can bridge the gap between
theoretical designs and practical manufacturability.'*" DTs cre-
ate virtual replicas of the manufacturing process that are contin-
uously updated with live production data. With this integration,
real-time process monitoring and control of the AM process are
facilitated to reproduce Al-designed geometries into physical
parts independent of inherent process uncertainty such as ther-
mal gradients and powder bed inhomogeneities.

In the future, these technological developments are expected
to drive advancements that will not only enhance the efficiency of
multimaterial system creation but also enable automatic material
and component design. Future research is likely to give rise to
autonomous material systems capable of self-adaptation,
Al-accelerated design methods that dramatically reduce compu-
tational burdens, and global databases that consolidate MMAM
data for enhanced AI model training. Together, they have the
potential to redefine the research agenda of MMAM, enabling
breakthrough discoveries and new design paradigms that recon-
cile complex material behaviors with simplified, automated
fabrication.

2.4. Summary and Outlook

Al-driven multimaterial design is revolutionizing AM by enabling
the systematic exploration of material, process, and structural rela-
tionships. Despite challenges such as complex interfacial interac-
tions, manufacturing uncertainties, and computational scalability,
advancements in hybrid physics-Al frameworks, autonomous
experimentation, and DTs are paving the way for more efficient
and adaptive design strategies. As these technologies continue
to evolve, they promise to bridge the gap between theoretical opti-
mization and real-world fabrication, accelerating the development
of novel, high-performance multimaterial systems with unprece-
dented precision and functionality.

3. Generative Al for Supporting Creativity and
Design for AM

Andrés Diaz Lantada”, Francisco Franco Martinez
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3.1. State of the Art

DfAM has emerged as engineering design methodology aimed at
making the best out of the possibilities provided by AM technol-
ogies for product innovation. DfAM strategies benefit from: 1) an
in depth understanding the working principles and limits of dif-
ferent AM resources; 2) a capability for taking advantage of the
vast portfolio of additively processable materials, which include
“smart” or stimuli-responsive raw materials empowering 4D
printing, as well as “living” bioprintable matter enabling biofab-
rication and engineered living materials; 3) design experiences
focused on wisely employing the achievable shape complexity
toward the customization of designs, the integration of function-
alities and the attainment of unprecedented features and abilities
in engineered products, often resorting to bioinspiration and bio-
mimetics; and 4) a wide set of dedicated design tools for fostering
creativity along the design lifecycle. Seminal references for mod-
ern AM contribute to outlining and applying DfAM strategies
and principles for the engineering of advanced, customized,
and intelligent products.l'>*? In this context, classical optimiza-
tion methods based on different combinations of CAD modeling
software and simulations tools have led to several examples of
innovative structures optimized for their AM and application
in several industrial sectors: finite-element modeling of compo-
nents and processes followed by redesign operations, topology
and topography optimization methods, generative design algo-
rithms capable of autonomously transforming and assessing
the impacts of geometrical changes on final performance, among
others, define the current state-of-the-art.***®! Through these
optimizations product innovation has been importantly fostered,
but usually during the last stages of the innovation cycle, in con-
nection with prototyping, testing, and reshaping.

However, the contemporary advent of generative AM is accel-
erating DfAM and may constitute a key driver of creativity in
years to come, especially due to its potential impacts in the more
conceptual phases of the innovation cycle, as further analyzed.
These generative Al algorithms can create data, text, images,
music, videos, design illustrations, and even CAD models follow-
ing textual instructions or “prompts”, following commands
straightforwardly provided in a user-friendly environment for
innovators. Besides, since the recent version of Chat GPT-4
and similar generative Als, it is now possible to employ images
and designs, as a complement or alternative to the textual
prompts, for initiating the interaction with these Als and driving
the creative process with a higher degree of control and starting
from self-developed content. Initial studies have already experi-
mented with generative Al for: 1) biomaterials research-driven
design, leading to impressive and futuristic furniture designs;'®”!
2) the incorporation of Al-generated content into the design pro-
cess, importantly fostering creativity;[®® and for accelerating sci-
entific discovery in the boundaries between materials, biology,
engineering, and art.*! A detailed reading of such papers puts
forward the shape-complexity intrinsic to many of the artificially
generated design concepts, which directly bridges the gap with
AM resources as key enabling technologies required for materi-
alizing shape complexity. Being the results of the prompt-guided
generation process so random, a methodology for systematic
creativity (and serendipity) promotion through constructive
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dialogues with artificial intelligences has been recently pro-
posed.”” Again, the conceptual illustrations generated clearly
help to align the innovation cycle with the possibilities of AM
from the very beginning of the concept screening phase.

3.2. Scientific Challenges and Technical Limitations

In short, the more relevant generative Als, such as Chat GPT, are
based on “generative pre-trained transformer” models. These
models were introduced for natural language processing by
Vaswani et al.”" in 2017. The transformers employed two inter-
connected parts: the encoder and decoder, similarly to others Al
models as the convolutional autoencoders. Specifically, ChatGPT
only used the decoder.”? The goal of this model is to minimize
language loss. Therefore, during the “pre-trained” phase, these
types of models treat to maximize the conditional probability.
This probability is modeled using a neural network, and its
parameters are optimized by using the stochastic gradient
descent.”® The GPT models apply the softmax layer to obtain
the probabilities of each “token” generated.”"”*) Based on the
probabilities obtained by the softmax layer, the transformer cre-
ates text by using probabilistic sampling techniques. Moreover,
as mentioned in ref. [73] for the model GPT-2, these kinds of
generalist models that can solve multiple tasks, should perform
the conditional probability of the output considering both the
input and the task. GPT-4 evolves from such models.

Indeed, to better understand the current possibilities and
challenges of generative Al for DfAM, a set of case studies is
prepared and presented following the aforementioned method-
ology based on constructive dialogues.®’ Table 2 summarizes
the conceptual design iterations for additively manufactured
components performed. Briefly explaining, the CAD model of
a spheric lattice typically oriented to AM is provided as image
input to Copilot, the generative Al employed, together with a
set of text prompts asking to illustrate the lattice employing dif-
ferent families of materials. The generated raw materials are
employed as building blocks for the subsequent stages of the
interaction with the generative Al, which is asked to illustrate
possible AM technologies during the manufacturing of such
geometries and to list down specific materials, as candidates
within the different families, for creating the lattices. Finally,
the generative Al is asked to propose a variety of industrial appli-
cations and to illustrate specific medical devices based on them.
Some additional experiments are performed dealing with the
illustration of more complex 4D-printed medical devices, with
the functional integration of proposed ideas and with the support
to stages closer to commercialization. The inspiring visual results
of the generated concepts are shown in Figure 3 and 4.

In the current state, as illustrated in the experiences summa-
rized in Table 2 and Figure 3 and 4, the interactions with genera-
tive Als lead to conceptual designs and promote the screening of
ideas, in connection with complex-shaped geometries requiring
AM technologies for their physical materialization, from the
beginning of the innovation cycle. Furthermore, the interaction
with these Als proves useful along the whole design cycle, helping
to refine the concepts,””* to approach 3D and 4D printing”>”® and
to plan their functional integration. Toward automated conceptual
and geometrical generation of directly printable shapes, which
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Table 2. Summary of inputs and outputs along a set of constructive dialogues with a generative Al linked to DfAM and to the finding and development of
innovative applications. Related graphical results are included in Figures 3 and 4; thanks to the use of Microsoft Copilot as generative Al for creativity

promotion.

First input and
prompts

First outputs:
lattices/porous
structures as raw
materials families

Second input and
prompts

Second outputs:
proposed
technologies for
each raw material

Second outputs:
proposed
candidates for
each raw material

Third input and
prompts

Third outputs:
proposals for
application

Third outputs:
conceptual
designs
illustrations

Other possibilities
for inputs and
prompts

Output: help with
process
illustration

Output: support
to CAD modeling

Output: support
to processing

Output: support
to functional
integration

Output: toward
certification and
commercialization

CAD model of a spheric lattice together with a textual description of the lattice, to be designed and manufactured additively employing different alloys,
ceramics, polymers, and carbons

Spheric lattice in anodized titanium Spheric lattice made of a high- Elastomeric lattice represented in a  Pyrolytic carbon spheric lattice as
with shades of orange and blue performance ceramic bluish-white color scaffold

For the previous images, the generative Al is asked to illustrate possible AM technologies and to list down specific materials, as candidates within the
different families, for creating the lattices

lllustration of laser powder bed Image of digital light processing Image of selective laser sintering  Image of pyrolyzed lattice (unable to
fusion creating a Ti lattice building a ceramic lattice building an elastomeric lattice provide a sequential process)
Anodized titanium as originally Alumina and zirconia TPU Pyrolytic carbon as originally asked
asked for for

For the different lattices, used as building blocks or raw materials, the generative Al is asked to propose a variety of industrial applications and to illustrate
specific medical devices based on them

Lightweight, high-strength Fuel cell structures and backbones Impact absorbing layers, flexible seat  Lightweight structural elements in
components for spacecraft, panels for solid oxide fuel cells, lightweight ergonomic cushions, energy spacecraft or aircraft, battery
or internal partitions for spacecraft,  thermal barriers in spacecraft or absorption systems and crash electrodes or supercapacitors,
heat exchange or thermal aircraft, support structure for barriers, medical devices applied in catalyst supports or reactor
management in satellite systems,  catalysts in reactors, heat-resistant ~ prosthetics or orthotics to create components in high-temperature
applications where enhanced filter for molten metals or high-  lightweight, flexible components that chemical processes, thermal
corrosion resistance and thermal  temperature gases, bone scaffolds or  adapt to the user's movements,  shields, filtration systems, implants
stability may be needed (i.e., harsh dental implants, protective coatings  flexible joints or grippers in soft like: proximal interphalangeal joints
environments), medical implants. for machinery and tools. robotics, soundproofing materials to  implants and trapeziometacarpal
dampen vibrations and noise joints implants
Image of a futuristic Ti knee Bioinspired structure for Visual representation of a soft Tissue engineering carbon scaffold
prosthesis reconstructing the sternum and robotics gripper adapted to the tibia
some ribs

Please help me to illustrate the functionality of a 4D-printed medical device, give me a sequential scheme of a set of interconnected manufacturing
processes, advise me about functional integration, give me relevant standards linked to my product, process or system, advise me about a
commercialization route

Support to illustrating 4D-printed concepts for medical devices, such as: 4D-printed stent deployment process; 4D-printed scaffold expansion in a broken
meniscus defect, emphasizing hygroscopic behavior and moisture absorption; 4D-printed scaffold expansion in a broken tibial defect, emphasizing
hygroscopic behavior and moisture absorption; multiscale and multimaterial tissue engineering scaffolds collection of interlocking geometries for
critically sized bone defect reconstruction

Innovative software resources are being developed (i.e., Meshy) for transforming -in a semi-automated way- the Al-generated illustrations into three-
dimensional CAD models, for example as .stl files, ready to print

As advanced, generative Als and related software resources are focusing on the semi-automated generation of .stl files for printing and other contributions

to supporting the processing of images and files, in connection with AM, can be highlighted: support to the automated correction of defects in the masks

employed for additive photopolymerization processes, help with the generation and modification of G-codes guiding printing heads possibly linked to

nonplanar printing processes, support with the finding of the ideal printing parameters for manufacturing with a specific technology and material, among
other possibilities

Among functional integration proposals in the performed constructive dialogues, through which the concepts of figures below have been obtained, some
interesting suggestions and remarkable features have been provided or highlighted by the Al, including: the scaffold supports mechanical loads while
gradually being replaced by natural bone tissue as it heals; the lattice-based structure provides flexibility and adaptability, allowing it to conform to various
surfaces without causing damage; pneumatic or hydraulic actuators, or servo motors, would be required for the gripper depending on the required force
and precision; the lattice would create an ideal environment for tissue growth, promoting cellular integration and vascularization; precise design, enabled
by advanced fabrication techniques, tailors the lattice structure to mimic the native bone, encouraging a seamless fusion with the body, to cite a few

Furthermore, generative Al not only promote creativity by providing inspired illustrations for CAD modeling or by reformulating CAD models used as
input for screening additional application concepts, but it also constitutes a very remarkable resource for finding application-related standards,
standardized validation tests, and regulatory pathways to develop the specific applications and help users reach market
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Figure 3. Generative Al applied to exploring geometries, methods, and applications in the field of biomedical AM for different materials: i) titanium alloys,
ii) ceramics, iii) elastomers, and iv) pyrolytic carbon. a) Complex spheric lattices obtained in the first stage after providing a CAD model as input.
b) Additive manufacturing technologies for the different lattices (from left to right: laser powder bed fusion, ceramic digital light processing, selective
laser sintering, and pyrolysis of stereolithographic precursors. ¢) Medical application concepts for the different materials lattices: knee implant with lattice
structure, sternum-rib scaffold implant, flexible gripper for soft robotics in TPU, and carbon scaffold adapted to the morphology of the upper part of the

tibia with a PDMS cushion in the meniscal region.

Figure 4. Generative Al applied to conceptually exploring biomedical applications for 4D-printed implants (conceptual images based on the following
“prompts” or textual instructions): a) 4D-printed stent deployment; b) 4D-printed scaffold expansion in a broken meniscus defect, emphasizing hygro-
scopic behavior and moisture absorption; c) 4D-printed scaffold expansion in a broken tibial defect, emphasizing hygroscopic behavior and moisture
absorption; and d) multiscale and multimaterial tissue engineering scaffolds collection of interlocking geometries for critically sized bone defect

reconstruction.

would provide an additional turn of the screw to the pace of inno-
vation, additional scientific-technological efforts are required.
Indeed, the presented designs are only illustrative concepts for
innovative medical devices and creativity promotion tasks. The
conceptual design process interacting with a generative Al starts
from lattices acting as “raw materials”, which are transformed

Adv. Intell. Syst. 2026, €202500484 €202500484 (12 of 54)

into the conceptual shapes of implants. In that way they connect
with lightweight design strategies, such as those based on topol-
ogy optimization and conformal lattice design, but in this case
only as illustrative concepts. Among detected challenges in the
use of generative Al for design tasks, starting the design with
a textual description leads in too many cases to undesired
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thought-provoking shapes and to a lack of repeatability. In the
illustrative examples presented, the generative Al-drive innovation
process has been controlled toward enhanced repeatability by start-
ing from simple CAD models of lattices, whose images are pro-
vided as input to the Al together with the textual description of the
lattices as raw materials. Still, the final results are just illustrations,
not printable designs. Besides, despite their appealing bioinspired
geometries, as in the case of the bone-mimicking lattices for ster-
num and ribs implants, they are not truly mechanically optimized.

At present, the design process would continue taking inspira-
tion on the generated illustrations, but a designer aiming at a
personalized mechanically optimal implants would still need
to process medical images, employ CAD modeling for creating
the design boundaries and the basic scaffolds or lattices, and
finally perform a conformal lattice design or a topology optimi-
zation to reach mechanically sounded and printable devices. In
fact, the current “holy grail” in generative Al for AM is the auton-
omous creation of reliable and printable designs (materialized as
ready-to-print.stl files) directly from the textual prompts and sup-
porting image inputs provided to the generative Al at the begin-
ning of the constructive dialogue. Interesting resources, such as
Meshy (AI 3D model generator), are already helping 3D artists,
game developers, hobbyists, and makers to turn text and images
into high-quality 3D models. Nevertheless, the intricate geome-
tries of lightweight DfAM objects, including lattices, porous
structures, functional gradients of density, topology and topogra-
phy optimizations, to cite a few, are still extremely challenging to
design from textual prompts or 2D images, and innovative strat-
egies should be explored to leverage gen-Al for AM.

Some of the possible approaches to overcome these limita-
tions and facilitate mechanically sounded designs, geometric
fidelity, direct manufacturing, and decision making from concep-
tualization to printing and postprocessing, are discussed in the
following subsection.

3.3. Scientific Pathways and Technological Developments

Regarding scientific pathways and further technological develop-
ments for fostering creativity while leveraging generative
Al-based DfAM, it is important to highlight relevant supporting
or complementary strategies showcasing pioneering studies on
denovo designing architected materials designs using trans-
former neural networks;””! and the generation of 3D architec-
tured nature-inspired materials and granular media using
diffusion models based on language cues.*”!

In the first case,””! Contrastive Language-Image Pre-Training
(CLIP) and VQGAN neural networks are employed in an iterative
process to generate images that reflect text prompt driven materi-
als designs. Subsequently, the resulting images are used to gen-
erate three-dimensional models that can be realized using AM.
Importantly, the mechanical evaluations of printed objects are ana-
lyzed by supporting finite element methods, which would enable
optimization and validation from the design stage. These valida-
tions will prove fundamental for the spread of generative Al for
design purposes, especially in industrially relevant and demanding
areas like healthcare, space and aeronautics, transport, and energy.

In the second case,’” a trained stable diffusion model and
consider it as an experimental system, examining its capacity
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to generate novel material designs especially in the context of
3D material architectures. A series of methods to translate 2D
representations into 3D data, including movements through
noise spaces via mixtures of text prompts, and image condition-
ing, are provided. In addition, physical samples using AM are
obtained, and material properties of materials designed via a
coarse-grained particle simulation approach are evaluated, hence
also contributing to illustrate how the required mechanical eval-
uation of materials and devices generated by AI can be per-
formed, especially in connection with demanding applications
and mechanical responsibility.

More recently, graph-native methods are already complement-
ing (even outperforming) the more classical LLMs in a desire to
facilitate and accelerate scientific discoveries and promote crea-
tivity.”®) For instance, graph-native reasoning models trained
with RL can embed explicit graph reasoning and recursive reflec-
tion into LLMs, which is expected to generate verifiable models
beyond pattern matching but incorporating structured reasoning
with agentic methods to achieve in situ verification.’®”?

3.4. Summary and Outlook

Toward the future, as the direct fabrication of complex printable
geometries -based on lightweight lattices or porous biomaterials-
advances to the point of enabling text- or image-driven generative
designs for patient-specific medical devices, it will become essen-
tial to implement standardized and widely accepted benchmark-
ing methods in parallel. These methods should evaluate
generative Al-derived solutions against current gold-standard
approaches. One possible procedure for quantitatively assessing
the capability of Al-based 3D model generators to produce
dimensionally and geometrically accurate complex shapes could
involve the following steps: 1) a collection of standardized
complex-shaped scaffolding structures or lattices is designed;
2) from these CAD models, images (isometric views, frontal,
upper and lateral projections...) as input for the AI 3D model gen-
erators are obtained; 3) the generative tool is asked to recreate.stl
files from the provided images; and 4) the generated files are
compared with those from the CAD models library, in terms
of volume, dimensions, and shapes, for quantification purposes.

In addition to these geometric evaluations, robust and standard-
ized methods must be developed for autonomously verifying the
alignment between designed implants and patient anatomy, in the
case of healthcare, or to benchmark a product’s design against
the design requirements or constraints. This will require accurate
processing of medical imaging data, the use of medical images as
input to generative Al tools capable of automated design and .stl
file creation, and systematic comparison with the Al-generated
designs. For upscaling and transforming truly transforming engi-
neering design, for instance for medical practice, research, and
development of software and hardware resources for the execution
of generative Al and language models with increased speed and
energy efficiently (i.e., Groq with LPU for NPL as an alternative or
complement to GPU) is also fundamental.

Concluding, the future shapes of additively manufactured cre-
ations are bound to be artificially generated, automatically vali-
dated, and additively obtained, although for the time being
additional research is needed.
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4, Al-Driven Multiaxis AM

Tianyu Zhang, Tao Liu, Charlie C.L. Wang"

4.1. State of the Art

Advancements in AM technology, driven by Al, have led to sig-
nificant progress in geometric design, process planning, and
quality inspection. Al-enhanced AM technologies demonstrate
outstanding performance, especially in improving manufactur-
ing efficiency, optimizing process parameters, and enhancing
product quality.®”

Al-driven methods, especially DL and GANs, have advanced
topology optimization by enabling efficient design of complex,
lightweight structures. Conditional GANs (cGANSs) reduce vol-
ume while preserving strength, optimizing support, and mini-
mizing overhangs.®!! CNNs predict geometric deviations with
high accuracy, as shown in x/y/z-axis error detection for PBF
prints.®? In process planning, ML models effectively optimize
parameters and monitor quality. CNN-LSTM networks in
two-photon lithography enable 95.1% accuracy in real-time mon-
itoring,®*! while CNNs in laser polishing achieve 97%-100%
classification accuracy.

Multiaxis 3D printing represents an innovative breakthrough
that overcomes the limitations of traditional AM technologies.
Conventional AM systems mainly rely on three-axis motion
and 2.5D tool paths, which, while convenient, exhibit notable
weaknesses in force direction matching and mechanical perfor-
mance.®Y The inherent staircase effect of layered manufacturing
results in poor surface roughness, failing to meet high-precision
requirements.’®” To address the issue of overhanging structures,
traditional methods often rely on substantial support structures,
leading to material waste and increased post-processing costs.®!

By introducing rotating and tilting degrees of freedom, multiaxis
3D printing surpasses planar printing limitations, achieving
support-less or even zero-support material accumulation, effectively
avoiding the drawbacks associated with support structures.*=*!
Moreover, adjusting printing paths and material deposition direc-
tions allows fibers to align with the principal stress direction, maxi-
mizing mechanical performance.®”**!

4.2. Scientific Challenges and Technical Limitations

Despite the advantages of multiaxis 3D printing in enabling
support-free structures, improved mechanics, and surface quality,
current methods remain limited by specific optimization strate-
gies and scope. Most focus on single objectives, making it difficult
to meet multiple manufacturing goals simultaneously. Dai et al.(*
introduced a curved layer decomposition using local optimization,
reducing support use but lacking global consistency for complex
geometries. Etienne et al.’” proposed a slightly curved layer
method for three-axis machines to reduce staircase effects, but
its limited degrees of freedom constrain path flexibility. Fang
et al.’" optimized fiber orientation in fused filament fabrication
(FFF) to enhance strength, yet their method is tied to single-
material, single-path setups, without addressing multiple
objectives like support minimization or surface refinement.
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Although multiaxis 3D printing has made significant progress
in recent years, existing multiaxis slicing techniques, especially
non-neural network slicers based on traditional geometry, con-
tinue to face considerable challenges in practical application
and performance optimization. S>-Slicer,”” as one of the most
advanced non-neural network slicing frameworks, employs non-
linear optimization to deform tetrahedral meshes through rota-
tional driving, mapping the height values back to the input
model to generate curved layers meeting multiple manufacturing
objectives. However, S*-Slicer still faces the following three key
challenges: 1) bottlenecks in complex mesh generation: S*
Slicer relies on generating high-quality tetrahedral meshes.
However, when applied to models with high geometric and topo-
logical complexity, the meshes often become overly dense, leading
to massive computational overhead and potential mesh
distortion or geometric inaccuracies. This stringent requirement
for mesh quality severely limits its application to complex struc-
tures and large-scale model printing. 2) Limitations of indirect
optimization objectives: the optimization objective of S*-Slicer
is indirectly achieved through rotational element deformation
rather than direct optimization on the curved layer itself. While
this method can partially meet path planning needs, the mismatch
between deformation space and model space can result in devia-
tions from manufacturing requirements. Particularly in tasks
involving complex geometries or stringent mechanical perfor-
mance demands, this indirect approach may lead to geometric
inaccuracies and insufficient mechanical performance. 3) High
dependency on initial posture: the nonlinear optimization process
of $3-Slicer is highly dependent on the initial posture of the input
model. If the initial posture is suboptimal, the optimization pro-
cess may easily fall into local optima, resulting in subpar path plan-
ning or inadequate mechanical performance. This dependency
necessitates extensive manual adjustments and iterative trials,
reducing operational efficiency and reproducibility.

4.3. Advantages of Neural Network-Based Slicers

In contrast to geometry-driven slicing frameworks, neural
network-based slicers leverage modern optimization and power-
ful shape/field representation capabilities to overcome many of
the limitations. First, neural implicit representations bypass the
reliance on dense tetrahedral meshes, enabling efficient and flex-
ible curved layer generation even for geometrically complex mod-
els.” Second, DL methods allow multiobjective optimization
within a unified framework, simultaneously considering support
minimization, surface quality, and mechanical performance,
which traditional optimization approaches often handle sepa-
rately.®* Third, by learning global geometric and stress patterns
from data, neural approaches exhibit strong generalization ability
and robustness, reducing sensitivity to initial posture and man-
ual tuning.*> These advantages make neural network slicers a
promising direction for practical multiaxis AM.

4.4. Scientific Pathways and Technological Developments

As multiaxis 3D printing technology continues to evolve rapidly,
traditional non-neural network slicing methods face numerous
challenges in performance optimization and handling complex
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geometries. For instance, nonlinear optimization frameworks
like S*-Slicer, while achieving multiobjective path planning to
some extent, are constrained by their dependence on high-quality
tetrahedral meshes and initial posture optimization. This limita-
tion often results in inadequate performance when dealing
with complex geometric forms and topological structures. The
introduction of neural network technology brings new break-
throughs and developmental directions for multiaxis 3D printing
(Figure 5).

The problem of curved layer generation in multiaxis 3D print-
ing can be formalized as a scalar field optimization task. For any
given input model M, an implicit function H(x) is evaluated,
where H(x) < 0 indicates that point x is inside the model,
and H(x) > 0 indicates that x is outside. The zero-level set of this
function approximates the model boundary surface. By comput-
ing a mapping function x, a curved layer scalar field G(x) is gen-
erated, where x represents a continuous deformation mapping to
meet the multiobjective requirements of multiaxis printing.
1) Flexible function expression capability: unlike traditional
methods relying on piecewise functions for tetrahedral element
deformation, neural networks (NN) possess highly nonlinear
expression capabilities, capturing more complex deformation
scenarios. By constructing a differentiable neural network pipe-
line, complex geometry and multiobjective optimization tasks
can be efficiently addressed.”**" 2) Direct loss function defini-
tion: the neural slicer directly defines the loss function on the
scalar field G(x) and its gradient VG(x), allowing local print
direction to be evaluated at any point within the computational
domain. This directly optimized mechanism avoids deformation
mismatch issues caused by rotation-driven methods.
3) Enhanced robustness and adaptability: by employing modern
stochastic optimization methods within the neural network
solver, rapid convergence and adaptive adjustment under various
initial states are achieved. Since all slicing parameters are

www.advintellsyst.com

represented within a differentiable network, quick adaptation
to geometric changes and manufacturing requirements is
possible.

The slicing algorithm of the neural network slicer consists of
three major stages: preprocessing, mapping optimization, and
post-processing: 1) Preprocessing stage: construct the implicit
function representation H(x) of the input model M using voxel
FEA to calculate internal stress fields, generating a tetrahedral
mesh C as a discrete representation of space Q. 2) Mapping opti-
mization stage: initialize neural network parameters 6, and 6, to
compute local rotational quaternions and scaling ratios. Apply
As-Rigid-As-Possible (ARAP) deformation to generate deformed
mesh Cy and use backpropagation to adjust network weights to
minimize the loss function. 3) Post-processing stage: extract
curved layer isosurfaces from deformed mesh Cy and trim them
using implicit function boundary constraints, ensuring that the
final curved layers meet support-free (SF) and strength reinforce-
ment (SR) requirements.

Experimental results demonstrate that the neural slicer gener-
ates high-quality curved layers in complex geometries and high-
genus structures. For example, in a bridge model, the curved
layers produced by the slicer improved fracture strength by
101.9% during three-point bending tests, while in a BunnyHead
model, specimens enhanced with SR optimization showed a
30.6% increase in fracture strength. Compared to S*-Slicer,
the maximum strain reduction reached 40.5%, validating signif-
icant mechanical performance improvements. Furthermore,
physical experiments demonstrated that curved layers generated
by the neural slicer exhibited strong robustness to initial posture
and flexible path planning on complex models (e.g., spiral fish
model), reducing overhang area by 94.2% and significantly
decreasing support material requirements.

To overcome these challenges, we propose a neural network-
based slicer (Neural Slicer) in ref. [95] that directly defines

Figure 5. Pipeline of S>-Slicer for multiaxis 3D printing. Reproduced with permission.l”®! Copyright 2022, Association for Computing Machinery.
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Figure 6. Pipeline of neural slicer for multiaxis 3D printing. Reproduced with permission.*®! Copyright 2024, Association for Computing Machinery.

continuous functions ¢g(x) and s(x) to represent local rotational
quaternions and scaling ratios, generating the mapping g(x),
s(x) (Figure 6). This innovative approach offers the following
advantages:

4.5. Summary and Outlook

The neural network-based multiaxis 3D printing slicer has
made significant advancements in support freedom, mechani-
cal enhancement, and surface quality optimization. Compared
to traditional non-neural network slicers such as S*-Slicer, the
neural slicer directly optimizes the curved layer scalar field,
avoiding the indirect optimization of rotational elements and
the dependency on high-quality tetrahedral meshes. All these
advantages are due to the implicit neural field-based represen-
tation of deformation fields that can be effectively solved by
advanced stochastic gradient solvers for neural network-based
self-learning. This greatly improves printing efficiency and path
accuracy in complex geometric structures and multiobjective
manufacturing tasks. In practical applications, the neural net-
work slicer exhibits high flexibility and adaptability, facilitating
high-quality printing of complex structures and mechanical per-
formance enhancement.

Despite their promise, neural network slicers in multiaxis 3D
printing still face key challenges. First, they often assume isotro-
pic material behavior, overlooking anisotropy from curved layer
deposition, which leads to inaccurate stress predictions. While
anisotropic FEA can improve accuracy, it adds significant compu-
tational overhead, limiting its integration in optimization loops.
Second, mapping relies on intermediate caging meshes;
although convergence is generally consistent across resolutions,
complex geometries can still cause variation in layer quality and
speed, affecting robustness. Lastly, collision detection remains
difficult-flattening layer paths with harmonic weights helps,
but in complex setups, it may default to planar layers, undercut-
ting the advantages of curved printing.

Future work should focus on embedding anisotropic stress
modeling into neural frameworks to improve mechanical
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performance prediction. Adaptive mesh generation could help
reduce resolution-related variability in curved layer optimization.
Integrating real-time collision prediction with motion planning
for toolpaths represented as diverse graphs would enhance path
robustness and safety when reinforcement-learning-based plan-
ner is conducted.””’

5. Al-Powered Strategies for Smart Design and
Processing in Advanced Material AM

Mohammad Hossein Mosallanejad, Reza Ghanavati, Abdollah
Saboori”

5.1. State of the Art

Components designed with tailored combinations of materials
achieve specific functionalities within a single part in demanding
applications. This approach is beneficial for sectors such as aero-
space, biomedical, and automotive, enabling the development of
innovative structures.*®! Although traditional manufacturing
techniques like powder metallurgy and welding can produce
metal-based advanced material systems, including multimaterial
components, they oftenface challenges when dealing with
complex geometries and structural integrity.”®) AM methods
have shown significant potential in producing components with
novel material designs. These methods allow for the precise
deposition of different materials within a single build process,
enabling the creation of complex geometries and customized
components with tailored properties. Research has demonstrated
that AM is a viable option for producing advanced material
systems. However, challenges such as material compatibility,
interface bonding, and process optimization still need to be
addressed.?*1%

Incorporating Al in advanced material design for AM offers
significant advantages. Al can optimize the design process by
capturing the complexity of interactions in AM and predicting
effective material combinations and configurations. ML algo-
rithms analyze extensive datasets, revealing patterns that may
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elude human designers and enhancing efficiency and innova-
tion."®Y Additionally, AI improves process control and monitor-
ing, ensuring the quality and performance of components
comprising advanced materials.’*? Due to the complex nature
of processing advanced materials by AM methods, multiscale
physical models combined with ML may offer insights into
how process variables relate to part geometry, composition,
microstructure, mechanical properties, and defects."*1%%! For
instance, computational alloying with real-time monitoring sys-
tems using ML techniques such as digital metallurgy can expe-
dite alloy design procedures to conceptualize functionally graded
parts and manufacturing with optimal processing conditions for
every compositional region.'***!

5.2. Scientific Challenges and Technical Limitations

Selecting the appropriate materials for particular applications
and their subsequent processing via AM presents many chal-
lenges, necessitating a comprehensive understanding of metal-
lurgy!'®! and other related disciplines, such as fluid dynamics,
heat transportation, and chemistry. There are several designs
commonly used for advanced materials by AM, including
MMAM, such as bimetal, FGMs, and hybrid materials
(Figure 7a)."%! Material compatibility is essential for selecting
a design that ensures the successful integration and performance
of diverse materials. The thermodynamics calculation of phase
diagram (CALPHAD) method can provide an informed design,
as Figure 7b depicts infeasible compositions (pink nodes) and
the transition path (red arrows) through feasible compositions
(green nodes) between terminals (purple nodes) on a quaternary
compositional diagram.!"* Nevertheless, some local phenomena
during the (post-)processing stage, such as micro-segregations
and liquation (Figure 7c) and the dilution effect (Figure 7 d),
could result in a significant deviation from its primary prediction
and fall into an infeasible region with high cracking susceptibil-
ity.[19>1%1 [ addition, the mismatch in thermophysical proper-
ties should be considered to mitigate other types of defects like
internal porosity (Figure 7e) and residual stress (Figure 7f)
within multimaterial structures.’®”'%! Furthermore, addressing
scalability is vital for transitioning from prototypes to large-scale
production while maintaining efficiency. Lastly, cost-effectively
achieving these advancements is critical for the widespread adop-
tion and sustainability of these technologies. Consequently, as Al
progresses, converting 3D layouts into high-quality products
using advanced materials systems will necessitate (i) the creation
of innovative mechanisms, such as mechanistic modeling and
ML methodologies, that determine the correct pathways based
on the aforementioned considerations. Additionally, (ii) real-time
data extraction equipment enables precise monitoring and con-
trol of the AM process, ensuring consistent quality.

The present issues identified represent critical challenges to the
adoption of Al-aided multimaterial development within the con-
text of AM:1) Product design: the lack of specialized software that
can define and optimize the topology and material placement
throughout the multimaterial structure, particularly in relation
to its application, hinders product efficiency. 2) Material compati-
bility: ensuring strong bonds between terminal materials and
addressing issues such as deleterious phases and cracking
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susceptibility in multicomponent systems, considering the entire
thermal history and the viability and performance of the transition
path in AM machines. 3) Printability database: development of
processing windows for each material combination and AM pro-
cesses with minimum risk of various defects, including poor mix-
ing, unmelted particles, porosity, residual stress, delamination, etc.
4) Post-processing treatments: planning essential bulk/surface
post-treatments and adjusting their variables with respect to
site-specific characteristics of multimaterial parts. 5) Scalability
and cost: the scalability of multimaterial AM processes and the
associated costs remain significant barriers to widespread adop-
tion. 6) Data management: handling the vast amounts of data gen-
erated during the multimaterial AM process, ensuring its security
against cyber-intrusions while offering DTs to utilize Al models
poses challenges to its adaptation. 7) Standardization: lack of stan-
dardized methods for characterizing and certifying multimaterial
composites, especially for safety-critical applications. The lack of
standardization and the need for consistent quality control are sig-
nificant barriers to the widespread adoption of Al-augmented AM.
However, Al can assist in developing standardized processes and
improving quality control measures.

5.3. Scientific Pathways and Technological Developments

5.3.1. Advanced ML Algorithms

Advanced ML algorithms can be developed for post-process
inspection, real-time in situ monitoring, and defect detection.™*”!
Meanwhile, a notable development is the use of physics-informed
ML, where mechanistic models based on process physics—such
as heat transfer, solidification kinetics, and melt pool dynamics,
are embedded within data-driven ML frameworks.'**"% Such
algorithms should be refined to manage advanced materials sys-
tems by Al-augmented metal AM processes and to process multi-
material systems, where varying thermal and physical behaviors
across materials demand broader generalization in predictive
models."®” Moreover, multiobjective optimization algorithms
can help in balancing trade-offs between different material prop-
erties and performance metrics.''"

5.3.2. AM-Specific Materials Featurization Packages

The challenge of multimaterial systems stems from their varied
behaviors, which are influenced by specific material combinations
and operating conditions. To address this issue, while adopting
data-driven approaches in metal AM processes, it is necessary
to provide feature sets that accurately account for energy absorp-
tion, melting, possible mixing, and solidification of multimateri-
als. Specifically, features that govern atomic-scale interactions,
electron behavior, and optical and thermal characteristics should
be identified and optimized."'” These features are critical for
predicting and tailoring the performance and compatibility of
materials in AM processes.""?! Automated feature learning
through DL techniques, like convolutional and graph neural net-
works (GNNs), enhances the identification of significant features
from raw data. Additionally, scalable cloud-based architectures
enable efficient processing of large datasets during production,
improving the understanding of advanced material systems.
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Figure 7. a) Common designs used for MMAM; Reproduced with permission.'®? Copyright 2021, Elsevier; b) A quaternary compositional
diagram with discrete compositions (purple: terminal, green: feasible, pink: infeasible) and possible paths. Reproduced with permission
under Open Access.'® Copyright 2025, I0P Publishing; ¢) Mechanism of liquation crack formation in AISI 316 L-IN718 FGM. Reproduced with
permission under Open Access.'®! Copyright 2025, Elsevier; d) Dilution effect in the deviation from a feasible region. Reproduced with
permission."%! Copyright 2025, Elsevier; e) High volume fraction of porosity in a feasible pathway between SS316-Ti6Al4V FGM. Reproduced with
permission.l"%”! Copyright 2022, Elsevier; and f) Sharp change in residual stresses at the interface of $$316L-IN718 bimetal. Reproduced with permis-
sion.[%8] Copyright 2023, Elsevier.
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Figure 8. Real-time data extraction equipment coupled with computation and Al cores make DTs to process multimaterials by AM.

Furthermore, machine-learning workflows enable passing infor-
mation from atomistic to continuum scales by training models
on molecular dynamics data and embedding defect/failure classi-
fiers into macroscale simulations,* while multiagent AI systems
that couple LLM reasoning with physics-aware agents accelerate
materials discovery for multimaterial metal AM.!"*4113]

5.3.3. Real-Time Data Extraction Equipment, DTs, and the
Internet of Things (loT)

Advanced materials systems in AM involve dynamic, multiscale
interactions—from atomic-scale bonding and phase transforma-
tions to meso- and macro-scale properties like thermal gradients
and compositional variations. The process also generates extensive
data streams from sensors such as optical imaging systems, laser
profilometers, acoustic detectors, spectroscopic devices, and ther-
mal cameras, each capturing distinct aspects of the AM process for
advanced materials. As schematically illustrated in Figure 8, ML
and DL techniques should be integrated with sensor data to
dynamically optimize process parameters. Combining advanced
ML models with in situ monitoring sensors creates AI models that
adhere to fundamental physical laws. These models utilize exten-
sive sensor data to optimize process parameters based on local
composition and to predict defects such as porosity, layer delami-
nation, or spatter formation. In advanced materials systems, inter-
faces often arise where composition and microstructure change
rapidly due to mixing, diffusion, and thermal gradients.
Synchronized DTs and IoT facilitate real-time monitoring,
improve predictive modeling, and optimize control. This integra-
tion combines sensing-driven, computation-driven, and data-
driven cores into a unified framework tailored for processing novel
chemistries or advanced materials (Figure 8).

5.3.4. LLMs

To enable Al-augmented AM for processing advanced materials
systems, advanced LLMs should integrate comprehensive
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datasets encompassing compositions, structures, and properties
specific to multimaterial systems, including gradient and inter-
facial phenomena.''® Developing comprehensive knowledge
graphs integrating data on material properties, process parame-
ters, and performance outcomes is crucial.'*>7*'”) LLMs can uti-
lize these graphs to deliver accurate recommendations for the
process. Advancements in real-time data processing and ML will
enable LLMs to adapt to dynamic conditions during AM, facili-
tating adjustments to process parameters and material selections
based on real-time feedback, thereby enhancing efficiency and
quality in multimaterial manufacturing.

5.4. Summary and Outlook

In conclusion, integrating Al into AM of the advanced materials
systems represents a significant advancement in addressing the
challenges posed by traditional manufacturing techniques. By
leveraging ML and multiscale physical models, the field can
optimize material selection, enhance process control, and drive
the development of innovative components with tailored prop-
erties for demanding applications. However, addressing issues
such as material compatibility, interface bonding, and scalabil-
ity remains crucial for the successful transition from prototypes
to large-scale production. These challenges can be resolved by
utilizing advanced ML, DL algorithms, and feature engineering
packages.

6. Synergies between Generative Als and AM
Ontologies

Alejandro De Blas-De Miguel, William Sol6rzano-Requejo”
6.1. State of the Art

AM has revolutionized personalized medicine by enabling the cre-
ation of medical devices tailored to the anatomical and functional
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needs of each patient. Efficient management of clinical and tech-
nical data is crucial to ensure the quality, biocompatibility, and
performance of these personalized implants.”>*? Ontologies,
as formal semantic structures based on descriptive logic, are
increasingly used to integrate diverse information from clinical
databases, patents, scientific articles, medical images, AM pro-
cesses, and material specifications.?>**!*®! Notable initiatives in
AM ontologies include the Additive Manufacturing Ontology,*”
the PBF-AMP-Onto for powder bed fusion processes,™* and the
Digital Manufacturability Analysis Ontology, which helps select
technologies compatible with specific CAD designs."*” These
ontologies also help to identify design flaws early in the AM pro-
cess by systematizing key geometric and material criteria.”’*® In
the medical field, ontologies such as the 3D Modeling Ontology
are used to semantically index anatomical models to improve
the retrieval of 3D medical data.!'*®! These ontologies are increas-
ingly being integrated with generative Al, enhancing the design
process Dby facilitating creativity and iterative refinement.

Thus, ontologies support knowledge integration and provide
the foundation for combining them with advanced computa-
tional approaches such as generative artificial intelligence (Al),
which enhances design processes by fostering creativity, iterative
refinement, and improved decision-making through constructive
dialogue with AT systems. The process begins by providing the Al
with a conceptual design image and context. The Al then inter-
acts with the designer, refining the initial concept into a more
robust product through a series of iterative steps.’” This inter-
action enables continuous design improvement, helping to iden-
tify optimizations and adapt the design for better performance.
When combined with ontologies, generative Al benefits from
structured semantic knowledge, which guides the AI system
in understanding material constraints, functional requirements,
and geometric parameters, thereby improving the reliability of
the generated solutions.['2"!%2

In 4D printing, recent developments have led to the creation of
an ontology that describes the entire lifecycle of a product, including
dimensional changes, triggering stimuli, materials, and AM pro-
cesses."*!] This ontology serves as a language for interacting with
Al, guiding material selection and manufacturing decisions, and
providing a visual representation of the final design. Such advances
illustrate how ontologies and generative Al are progressively con-
verging in AM, bridging structured knowledge with creative design.
Moreover, this type of ontology can be combined with biomedical
ontologies to provide a richer clinical and anatomical context, fur-
ther assisting the personalized design of medical devices.

6.2. Scientific Challenges and Technical Limitations

Despite significant progress, the practical application of ontologies
in biomedical AM faces several challenges, mainly due to
the inherent complexity of semantic modeling. Developing and
maintaining these ontologies demands highly specialized exper-
tise, which often limits their widespread adoption in clinical
and production environments.?®'?% A key challenge is the effec-
tive integration of highly heterogeneous data, as interoperability
and re-use of information requires rigorous, widely accepted
semantic normalization, which is especially critical in medical
contexts.”>=! In this regard, FAIR (Findable, Accessible,
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Interoperable, Reusable) frameworks play a crucial role in enhanc-
ing the management of clinical, experimental, and computational
data.™ Their emphasis on interoperability and reusability aligns
directly with the objectives of biomedical AM ontologies, as both
approaches seek to reduce information fragmentation and pro-
mote knowledge transfer across research, clinical, and industrial
stakeholders.

Closely related to this is the integration of ontologies with AlI-
based digital CAD platforms, a development of particular rele-
vance for biomedical AM. This convergence enables automated
manufacturability analysis, optimal machine and material selec-
tion, and the early detection of problematic geometries that could
compromise the printing process.*”'?% Yet, its implementation
remains challenging due to the complexity of both the ontological
structures and the advanced Al technologies involved. Moreover,
the design of a medical device generally requires a three-
dimensional reconstruction of the patient’s anatomy to produce
a personalized implant.’?*! While this process usually results
from the synergistic collaboration between physicians and engi-
neers, it would be highly valuable if AI could interpret such ana-
tomical data and propose design models consistent with
predefined clinical and engineering requirements.’*”'*%)

In addition, current ontologies still struggle to automate the rec-
ognition of critical features in CAD models. These tasks are often
still performed manually by experts, limiting the potential for
increased efficiency in the design and manufacturing pro-
cess.”?!1 As AM technologies continue to evolve, the need for
more sophisticated ontological frameworks to manage the increas-
ing complexity of designs and processes becomes more apparent.

Finally, there is a lack of consensus on terminology within bio-
medical publications related to 3D printing. This lack of standard-
ized terminology is a significant barrier to semantic interoperability,
limiting the clarity and reproducibility of research and making it
difficult to compare studies and build on previous work.'2%27)

6.3. Scientific Pathways and Technological Developments

In response to the challenges, generative Al has emerged as a
critical tool for supporting the development, maintenance, and
use of ontologies. For example, LLMs such as GPT-4o greatly
facilitate the dynamic construction and updating of ontologies,
enabling rapid adaptation to technological advances and emerg-
ing needs within the sector.!'**!

As a proof of concept, the methodology and ontology developed
in ref. [88] were used, modifying the prompts to assess whether an
ontology for the design of 4D-printed material systems and struc-
tures could support the design of medical devices using ChatGPT-
40. The first two prompts follow the steps outlined in the previous
work, while the third prompt allows the ontology to be adapted for
the design of the specific 3D or 4D medical device. The fourth
prompt requires an initial CAD image of the medical device, along
with its corresponding code, and asks for instructions regarding
geometric modifications and material selection. These selections
are made from a pre-defined family of materials tailored to the
selected manufacturing process. The fifth prompt then requests
further geometric modifications, focusing on optimizing the
DfAM, with the Al providing guidance, including how the implant
should be oriented on the printing platform.
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The sixth and seventh prompts provide a visual representation
of the new implant, taking into account the information from the
previous prompts, with ChatGPT connecting to DALL-E to gen-
erate the visual output. The process is outlined in Figure 9, and
the results of each prompt are shown in Table 3. For example, a
short stem hip prosthesis was selected for the 3D device, while a
coronary stent was selected for the 4D device.

www.advintellsyst.com

In addition, based on the visual output generated by DALL-E,
the STL file can be obtained via the Meshy platform, which allows
the generation of a mesh from an image. The AI generates four
options, from which the designer chooses the most suitable one,
thus finalizing the model for printing.

Although this is proof of concept, the methodology shows
how an ontology can be reused for more specific purposes,

Figure 9. Workflow for 3D and 4D medical device design employing generative Al and semantic ontology.
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Table 3. Outcomes of ChatGPT-4 prompts in the development of 3D and 4D medical device designs.

Prompt Outcomes for 3D-printed medical devices Outcomes for 4D-printed medical devices
Input: image
Input: code A/SLM 3D/INV-EXP/MS/1D/EXP/MS/3D/P/DLP

Third prompt: Thank you very much. As a 4D printing engineer, you are the best. | want to make a modification to the ontology to design custom medical devices using parts of

the existing coding.

1) Accordingly, | will provide you with an image of the initial medical device followed by a code line that introduces the material and additive technology to be used. Do you think

you are able to adapt to this new requirement?
2) To do this, I'll provide an image of the initial medical device, followed by a line of code excluding shape details. Do you think you’d be able to adapt to this new requirement?

Fourth prompt:

Could you provide me with
descriptions of how to design the
attached medical device with the
following coding, including geometric
and material aspects based on the
selected AM technology?

Fifth prompt:

Using the principles of DfAM, can you
please consider the geometric
modifications required given the
design provided and the AM
technology selected?

Sixth prompt:

Could you provide a visual
representation of the medical device
based on the coding provided above
and your recommendations?

Each right image comes from DALL-E
and each left, Meshy (STL file).

Adv. Intell. Syst. 2026, 202500484

Visual analysis:

« It resembles a femoral stem.

« It has tapered, curved base body for intramedullary
insertion.

+ Neck which likely interfaces with the joint
mechanism.

Material consideration:

« Select titanium alloys (e.g., Ti-6Al-4 V) for: high
biocompatibility, excellence osseointegration,
corrosion resistance, and load-bearing strength.

» Include microporosity or lattices structures to
enhance bone in-growth.

« Surface texturing or coating may be done post-print.
Design guidelines for SLM:

« For optimal quality, maintain a minimum wall
thickness of 0.3-0.5 mm for critical features, provide
support for overhangs below 45°, orient the build
vertically (stem upright) to reduce support needs at
key joint interfaces, and use post-processing methods
like polishing (for the neck) or grit-blasting (for the
stem) to achieve the desired surface finish.

Use a 3-5 mm fillet at the neck junction to minimize
stress and reduce support needs, make the stem core
hollow with a T mm wall thickness for lighter weight
and improved heat dissipation, embed a lattice
structure in the proximal region to encourage
osseointegration, apply a smooth gradient in the
transition zone to avoid stress concentrations, and
keep the distal tip solid for effective load transfer and
stable insertion. Additionally, maintain a rough finish
on the stem (enhancing bone integration) with a
polished neck for proper mechanical fit, and
incorporate recessed ID markings to ensure
traceability without compromising the implant’s
integrity.

€202500484 (22 of 54)

Description based on image and code:

« The structure is a 3D cylindrical tube with a repeating, wavy mesh lattice.
Based on Table A.1, this best fits the T (Tube) category in both its initial and
final states, although the compressed intermediate state could resemble a 1D
bar (B) or thin cylinder (CY).

« The code uses 1D to describe the compact configuration, implying a
collapsed or rolled-up stent.

Shape-morphing transformations:

« This implies a shape-memory mechanical mechanism—the stent
temporarily holds a small diameter (to travel through vessels) and then
expands in place.

Material selection:

« You should use a photocurable, biocompatible polymer suitable for DLP,
such as: PEGDA, PCL-based resin, medical-grade acrylates or methacrylates,
smart polymers with moderate shape recovery capability under mechanical
stress.

« The material should offer elasticity, biocompatibility, and mechanical
resilience to radial stress.

Design guideline:

« DLP allows high-resolution printing of small, intricate geometries,
consequently, it is perfect for cardiovascular structures like stents. Use
isotropic resolution settings in DLP to ensure strength uniformity in both
radial and axial directions.

Use a minimum lattice thickness of 200 pm for durability and printability, with
at least 300 pm spacing
to prevent fusing. Smooth out sharp curves to support elastic deformation,
and include drainage paths
(open lattice ends or microchannels) to allow resin outflow. Incorporate
thinner wall zones for shape-
memory functionality and compensate radial dimensions slightly to account
for resin shrinkage.
Maintain smooth transitions, avoid enclosed voids to meet biocompatibility
standards, and facilitate sterilization. For compression and expansion, a radial
auxetic pattern (e.g., rotating units or reentrant hexagons) can replace wavy
meshes, enabling more reversible expansion and improved
load-bearing capability.
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Table 3. Continued.
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Prompt Outcomes for 3D-printed medical devices

Outcomes for 4D-printed medical devices

Seventh prompt:

Could you please create a labeled 2D
diagram showing the shape
transformation of the designed
medical device?

Not applicable in the case of the hip prosthesis.

demonstrating its versatility. Future developments may involve
algorithms that can read and modify STL files directly according
to the selected material and AM process. This will likely require a
combination of artificial life algorithms, such as Al, genetic algo-
rithms, and cellular automata.

Beyond these initial explorations, novel frameworks such as
Graph-PRefLexOR broaden the scope of Al in ontology-driven
design. Graph-PRefLexOR is a framework that extends LLMs with
insitu graph construction, symbolic abstraction, and recursive
refinement. This is different from models such as ChatGPT,
which generate responses sequentially without building explicit
reasoning structures. Graph-PRefLexOR offers the advantage of
integrating graph-based symbolic representations.””® This enables
greater transparency, interpretability, and generalization to
domains not present in the training data. This architecture produ-
ces textual output by first organizing knowledge into graphs of
concepts and relationships, identifying abstract patterns that allow
reasoning processes to be more closely aligned with scientific
methods. When combined with biomedical or engineering ontol-
ogies, this approach can enrich the graph with standardized,
semantically consistent vocabularies, thereby enhancing interoper-
ability, reducing ambiguity, and facilitating the integration of clin-
ical, experimental, and industrial data. Thus, the synergy between
Graph-PRefLexOR and ontologies could lead to systems capable of
proposing testable hypotheses, detecting inconsistencies, and
generating personalized designs with a level of rigor and traceabil-
ity that goes beyond what conventional LLMs can offer.

In parallel, field-driven design methodology is being employed
to generate topologically optimized structures while significantly
reducing computational costs. Software such as Ntop integrates
this approach, whereby any physical parameter - including
geometry, patient anatomy, simulation results, experimental
data, manufacturing toolpaths, and more - can be defined as a
field.">) The optimization process then involves integrating
these fields. Building on this concept, Effective Field Neural
Networks (EFNNs), which are inspired by field theory, provide
a powerful computational framework that can automatically
refine and capture complex, multibody interactions through
recursive field-quasi-particle representations.!'*”! By combining
EFNNs with generative Al and ontologies, diverse biomedical
and engineering data can be represented as interoperable fields
and optimized in a physics-informed manner, enabling the auto-
mated generation of personalized medical devices tailored to
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patient anatomy, designed for AM with appropriate materials,
and ensuring the required mechanical and biological properties.

6.4. Summary and Outlook

Generative Al opens up new possibilities in design and can further
improve the performance of AM, transforming multiple industrial
sectors. However, incorporating it as a design resource requires
new methodologies and training for designers to transition from
traditional CAD modeling and simulations based on mouse-click-
ing commands to textual and image-based instructions provided as
“prompts”. Consequently, a new design language is emerging that
combines the expressive power of natural language for describing
context and details with the precision and efficiency of taxonomies,
ontologies, and related codifications. The examples reviewed in this
work demonstrate the potential of combining generative Al and
AM ontologies, showcasing pioneering studies in this area.

Looking ahead, several research directions stand out. First, the
development of standardized biomedical AM ontologies is crucial
for ensuring semantic interoperability across disciplines. Secondly,
integrating graph reasoning frameworks and field-driven neural
networks with generative Al could lead to hybrid platforms com-
bining creativity with rigorous physical constraints. Thirdly, estab-
lishing robust evaluation metrics and error estimation methods
will be crucial for validating the reliability and reproducibility of
Al-driven design pipelines in clinical and industrial contexts.

Taking together, these advances demonstrate that the synergy
between generative AI and AM ontologies is feasible and highly
promising for accelerating innovation. By embedding reasoning,
physics-informed optimization, and semantic clarity into the
design cycle, the next generation of medical devices could
achieve levels of personalization, reliability, and clinical impact
that are currently unattainable.

7. DT in AM
Yi Cai”, Xiangyang Dong, Huangyi Qu
7.1. State of the Art

DT was first conceptualized by Michael Grieves in 2002 and later
defined by NASA as a multiphysics, multiscale computational
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simulation that mirrors the lifecycle of a physical entity or sys-
tem.'] When integrated with AM, DTs enable the creation of
adaptive, real-time digital replicas of AM processes and machin-
ery,*% facilitating advanced functionalities such as live process
monitoring, anomaly detection, iterative optimization, and pre-
dictive maintenance strategies.'*"! A DT framework in AM is
structured around five core elements: the physical object, its vir-
tual twin model, data-driven services, dynamically updated twin
data, and their bidirectional interactions.[*?

DT technology is transforming AM by enhancing hardware
capabilities and process efficiency, as illustrated in Figure 10.
For 3D printers, DTs serve as high-fidelity virtual counterparts
that dynamically simulate printer behavior across diverse
operational scenarios.?” Through continuous sensor data
streams, they empower predictive maintenance by proactively
identifying abnormal patterns before failures. This enables
manufacturers to minimize unplanned downtime, prolong
equipment longevity, reduce lifecycle costs, and maintain prod-
uct quality. In process optimization, multiphysics DTs model
intricate phenomena such as thermal gradients, energy distribu-
tion dynamics, and material flow during fabrication.[***! These
insights allow precision calibration of critical parameters—
including laser power intensity, scan velocity, and layer
resolution—to achieve optimal print outcomes. Emerging
research is also expanding DT-based analytics into end-to-end
AM workflows, spanning from design and production to post-
processing and recycling.**

Figure 10. Research framework for Al-driven DT of AM.
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The integration of AI has further advanced DT capabilities.
At the design stage, Al-powered DTs generate optimized AM
geometries tailored for AM constraints, such as weight minimi-
zation, stress distribution optimization, and material usage
reduction.**) These generated designs undergo virtual validation
within DT environments prior to production, significantly
mitigating manufacturability risks and eliminating costly trial-
and-error iterations. During production, cutting-edge Al architec-
tures, notably deep RL™3 create self-learning DTs."*” Such
adaptive twins continuously refine their predictive models by syn-
thesizing real-time sensor inputs with historical process data,
enabling them to anticipate complex thermo-mechanical behav-
iors, recalibrate parameters, and evolve decision-making protocols
iteratively. This closed-loop intelligence drives precision gains
while fostering resilient, self-correcting manufacturing ecosys-
tems. Post-production phases also benefit from Al-augmented
DTs. Machine vision-enhanced simulations forecast outcomes
of treatments like thermal annealing or abrasive surface polishing,
allowing operators to preempt defects and calibrate post-
processing variables virtually.'*®) These advancements highlight
the transformative potential of Al-enhanced DTs in driving inno-
vation, improving sustainability, and reshaping the future of AM.

7.2. Scientific Challenges and Technical Limitations

Although various DTs for AM have been developed and demon-
strated, this endeavor is still in its infancy and facing numerous
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challenges. Immature hardware components, segmented
software ecosystems, and cross-domain collaboration barriers col-
lectively restrict the realization of complete DT functionality. Below
are key challenges based on the fundamental components of DTs
in AM:

7.2.1. Physical Object

Sensor Integration: High-fidelity sensors are essential for captur-
ing real-time process parameters in AM. Poor sensor placement
or insufficient sampling rates can result in incomplete datasets,
reducing the accuracy of twin models.

7.2.2. Virtual Model

Model Fidelity and Scalability: Virtual models should accurately
replicate the physical system but achieving high fidelity in AM
is complex due to nonlinear material behavior, process variabil-
ity, and multiscale modeling requirements. Scaling DTs for
large-scale AM production also presents challenges, including
high computational costs, system complexity, and interoperabil-
ity issues.

7.2.3. Twin Data

Data Integration: AM generates vast amounts of data from
sensors, CAD models, simulation tools, and post-processing
systems. The complexity of integrating these diverse data
streams, coupled with risks such as “garbage in, garbage out”
(GIGO) from noisy or incomplete data, threatens the reliability
of DTs.

Security and Privacy: The reliance on IoT and cloud platforms
opens the door to intellectual property theft, reverse engineering,
and industrial sabotage. Sensitive design blueprints are at risk of
cyberattacks, while malicious commands could disrupt produc-
tion lines.

Figure 11. Challenges and potential solutions in DTs for AM.
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7.2.4. Services

In Situ Monitoring and Analysis: AM processes require in situ
monitoring to ensure precision and quality. These processes gen-
erate vast amounts of data from diverse sources, which is often
heterogeneous, ranging from temperature profiles to material
stress readings, and must be analyzed in real-time to detect
issues like overheating, porosity, or material inconsistencies.
However, the large volume and variety of data, combined with
the dynamic nature of AM processes, make analysis challenging.

Real-Time Processes Control and Optimization: Achieving
precise control over key parameters requires millisecond-level
adjustments based on real-time feedback from sensors.
However, the integration of diverse, high-volume data streams
introduces latency and synchronization issues, and many con-
trollers are currently unable to make real-time adjustments based
on actual conditions. Additionally, the nonlinear interdependen-
cies between parameters make optimization computationally
intensive and time-consuming

7.2.5. Twin Interaction

Interoperability: The lack of open-source framework and standard-
ization across AM systems leads to “ecosystem silos,” where pro-
prietary protocols and fragmented toolchains isolate data. This
prevents seamless integration with systems like Enterprise
Resource Planning (ERP), breaking global optimization chains
and limiting DT functionality.

7.3. Scientific Pathways and Technological Developments

Despite the challenges above, advancements in DT theory, Al
tools, IT technologies, and standardization offer promising sol-
utions to unlock the full potential of DTs, as shown in Figure 11.

Advancements in DT theory, such as Parallel Systems theory
and the “ACP” framework, play a critical role.** This framework
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consists of Artificial Systems (A), which create virtual models rep-
licating physical systems; Computational Experiments (C), which
simulate and test scenarios using these models; and Parallel
Execution (P), ensuring continuous interaction between physical
and virtual systems.!"*! This real-time interaction enables moni-
toring, analysis, prediction, and optimization of AM processes.
Additionally, the concept of Digital Cousins, abstracted models
applicable to multiple systems, reduces the need for build high-
fidelity models of physical systems, significantly reducing compu-
tational costs while delivering valuable insights for diverse
manufacturing needs.!"*"

The integration of advanced Al technologies, such as LLMs
and causal inference intelligence, is transforming DT capabili-
ties. LLMs process and analyze large volumes of unstructured
manufacturing data, enabling accurate predictions and auto-
mated decision-making.['*?! For instance, they can identify com-
plex patterns in sensor data to detect anomalies or recommend
process parameters optimizations. Causal reasoning enhances
DTs by uncovering cause-and-effect relationships within com-
plex systems,'*? enabling root-cause analysis and proactive
real-time problem-solving. These advancements evolve DTs from
reactive tools into intelligent, adaptable systems for improving
manufacturing outcomes.

Advanced IT technologies, such as IoT and edge computing,
further enhance DT capabilities by enabling real-time data collec-
tion, processing, and feedback.'** High-precision sensors mon-
itor key parameters, while edge computing reduces latency by
processing data locally, allowing faster decision-making and
adjustments. Blockchain technology further strengthens DT sys-
tems by ensuring data integrity, providing transparent audit
trails, and mitigating cyberattack risks through decentralized
and immutable ledgers.!"**!

In terms of ecosystem construction, standardization efforts are
vital in breaking down barriers between systems. Standardization
fosters interoperability and scalability by establishing common
data formats (e.g., STL, AMF) and communication protocols
(e.g., OPC UA). These standards ensure compatibility across vari-
ous tools and systems, enabling seamless integration of DTs with
platforms like ERP and supply chain management.["*% As a result,
standardization reduces complexity, lowers costs, and creates a
unified ecosystem that supports the widespread adoption of
DTs in AM. Moreover, increased industrial practices and collab-
orations!™”! can help accelerate the development and acceptance
of these standards, ensuring they meet the diverse needs of
real-world applications and drive faster progress in standardiza-
tion efforts.

7.4. Summary and Outlook

AM plays a vital role in future manufacturing industries,
enabling design freedom of complex geometries, customization,
and material efficiency. However, it currently suffers from major
shortcomings in part quality, process reliability, and production
scalability. DT technology tackles these issues by creating
dynamic virtual replicas of physical processes and equipment,
enabling in situ monitoring, defect detection, process optimiza-
tion, and predictive maintenance. The integration of Al further
amplifies DT’s capabilities in AM, as advanced Al technologies
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empower DTs to analyze vast datasets, identify root causes of
deviations, predict defects, and optimize parameters, ensuring
adaptive and intelligent process control. These Al-driven DTs
not only enhance precision, efficiency, and adaptability but also
accelerate innovation, unlocking the full potential of AM.
Although challenges remain including real-time monitoring of
the agent in action, data integration, and interoperability across
a large landscape of potentially relevant properties, significant
efforts and progress have been made in advancements of DT the-
ory, development of novel Al tools, implementation of powerful
IT technologies, and establishment of standardization. By sys-
tematically addressing current barriers and fostering a synergis-
tic collaboration ecosystem, Al-driven DTs are poised to
revolutionize AM toward smarter, more efficient, and sustain-
able manufacturing processes, bringing extensive and far-
reaching changes to the whole manufacturing industry.

8. Al for Online Monitoring and Defect Detection
in AM

Najmeh Samadiani®, Guangyan Huang.

8.1. State of the Art

Real-time defect detection and automated quality control are
essential for ensuring the reliability of AM components, as
defects such as porosity, cracks, surface irregularities, and
spreading faults can significantly compromise mechanical
performance. Early identification is, therefore, critical to mini-
mizing waste and ensuring consistency.

Substantial progress has been made in Al-driven online mon-
itoring, underpinned by in situ sensors that capture diverse phe-
nomena during fabrication (Figure 12). Camera-based vision
systems, including visible-light, high-speed, and near-infrared
imaging, are the most widely deployed, offering detailed views
of melt pool dynamics and surface evolution.!**) Thermal and
pyrometer imaging complement these by detecting heat-flow
anomalies linked to porosity, while acoustic and vibration sens-
ing capture spreading faults and process instabilities. No single
monitoring architecture addresses all AM variants, however,
defect types and sensor requirements vary by material and tech-
nique. Consequently, domain-specific systems have been
reported for wire arc welding,®**! laser-based AM,*% polymer
extrusion-based AM,"*") and material extrusion.!">%

From a modeling perspective, early AI2AM studies relied on
single-modality deep models. For instance, Lu et al.l'"** evaluated
Recurrent Convolutional Neural Network (R-CNN), Single Shot
Multi-Box (SSD), and You Only Look Once v4 (YOLOv4)—to
detect misalignment and abrasion in real-time videos of
Carbon Fiber Reinforced Polymer (CFRP) composites. While
such approaches demonstrate the feasibility of automated defect
recognition, their generalization across machines, geometries,
and materials remains limited. To move beyond passive detec-
tion, RL has been adopted for process adaptation: Chung
et al.> demonstrated that RL can dynamically optimize FFF
parameters and reduce defect rates via real-time mitigation.

The influence of Al-based real-time defect detection extends
beyond AM. In the construction sector, researchers™®! have
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Figure 12. A simple scheme of an Al-driven defect detection system involves capturing various real-time data streams from sensors during the AM
process. These data streams are then processed through an Al model, which analyzes the information to identify different defect types.

utilized ensembles of deep networks and a StyleGAN3 architec-
ture to detect breakpoints during 3D concrete printing (3DCP),
whereas in biomedicine, online monitoring has facilitated flaw-
free, industrial-scale bioprinting of tissue constructs."*® These
cross-sector successes reinforce the potential of Al for adaptive
quality assurance across diverse manufacturing contexts.
Building on these foundations, recent work is beginning to
extend AI2AM from feasibility studies toward frameworks with
broader industrial relevance. Current developments integrate
multimodal sensing, hybrid modeling, and emerging agent-
based orchestration,*>”"**®) approaches that enhance robustness
under varying conditions while helping to mitigate the chal-
lenges discussed in the following section. Collectively, these
trends suggest that Al-driven defect detection is evolving from
isolated, single-modality models into more cohesive and distrib-
uted ecosystems capable of adaptive, real-time quality assurance.

8.2. Scientific Challenges and Technical Limitations

Despite rapid advancements in Al-driven defect detection for
AM, several challenges hinder its widespread adoption:
1) Data scarcity and lack of benchmarks: high-performing Al
models require large, diverse, and well-annotated datasets,!*”
but generating AM data is costly and time-consuming. Many
AM systems demand expensive fabrication steps, making it
impractical to collect vast amounts of real-world data. As a result,
most available datasets are restricted to simplified geometries
(e.g., cylinders or cubes in metal AM),!">% which limits the ability
of models to generalize effectively across complex shapes,
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materials, and process parameters. The absence of standardized,
high-quality public benchmarks further restricts reproducibility,
method comparison, and collaborative progress across the com-
munity. 2) Costly, time-intensive annotation: reliable ground
truth often requires destructive or high-cost nondestructive
inspection (NDI) techniques such as micro-CT scanning.
These methods are not always accessible, and because most
annotations are generated post-build, models trained on such
data cannot support real-time adaptation. This delay reduces
the ability of AT models to intervene during the build to prevent
defect propagation. 3) Defect heterogeneity, process variability,
and hidden flaws: differences in material properties, such as
thermal conductivity and melt pool dynamics, cause defects to
manifest inconsistently even within the same AM technique.
This variability, combined with the inherently multiscale and
multiphysics nature of AM, makes it difficult for AI models to
generalize across different machines, materials, and geometries,
as accurate prediction requires capturing coupled thermal,
mechanical, and material interactions."*”! A further complica-
tion is the prevalence of internal defects, such as pores or cracks
buried within components, which cannot be detected by surface
sensors alone. Detecting these flaws in real time is especially
challenging, as conventional NDI methods (e.g., CT, ultrasound)
are too slow and costly for inline monitoring. 4) Real-time con-
straints and closed-loop integration: achieving millisecond-level
latency for on-the-fly defect mitigation requires efficient deploy-
ment of models at the machine (edge). However, high-speed data
streams and large networks create bandwidth and computational
bottlenecks, while cloud-based inference introduces delays.
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At the same time, most AM platforms lack native closed-loop
interfaces, limiting the integration of Al-driven monitoring with
real-time process control. 5) Human factors and explainability:
current Al systems for defect detection rarely provide clear, inter-
pretable outputs, making it difficult for operators to understand
or act on predictions. This lack of transparency undermines con-
fidence and poses a barrier to industry adoption.

8.3. Scientific Pathways and Technological Developments

Although challenges remain in online monitoring and defect
detection in AM, recent advancements in AI methods and IT
infrastructures provide promising solutions to address these
difficulties:

8.3.1. Data Augmentation, Knowledge Transfer, and Multimodal
Fusion

Data scarcity and the lack of benchmarks can be mitigated with
synthetic data generation (GANSs, diffusion, domain randomiza-
tion) and knowledge transfer from pretrained vision-language
models (VLMs), while federated learning enables cross-site
improvement without sharing proprietary data.'*) Beyond
single-sensor inputs, multimodal fusion increasingly adopts
voxel-based analytical models as a common substrate for hetero-
geneous streams; for example, camera images, laser light-section
data, and ex situ CT can be co-registered into a consistent
voxel representation that combines nominal and sensor-derived
information."®? Such unified substrates support holistic QA
and can improve generalization across machines, materials,
and geometries.

8.3.2. Unsupervised Annotation and Adaptive Learning

To reduce the cost and delay of annotation, unsupervised, semi-
supervised, and active learning approaches are being developed
to exploit unlabeled data and prioritize limited micro-CT valida-
tion. LLMs!"®*'** with retrieval-augmented generation (RAG)
can further integrate expert knowledge and prior reports to sup-
port annotation and harmonize label protocols. Beyond labelling,
adaptive learning enables continuous refinement from real-time
sensor feedback, while large-concept models,'*> combining
vision, RL, and multimodal fusion, exemplify adaptable systems
that adjust dynamically to evolving AM conditions.

8.3.3. Physics-Informed and Hybrid Modeling

To improve defect prediction accuracy and reduce reliance on
purely data-driven models, PINNs"®® incorporate fundamental
material behavior and process physics. Hybrid Al approaches,
which merge ML with FEA, provide a robust framework for
defect modeling by combining empirical data with engineering
simulations. This enhances both real-time defect detection and
process optimization, making AI2AM systems more interpret-
able and reliable.
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8.3.4. loT-Enabled Real-Time Systems and Multiagent Control

Real-time monitoring in AM can be achieved by integrating
IoT-enabled sensor networks with edge-cloud computing.
Edge devices provide low-latency inference at the machine, while
cloud platforms support large-scale retraining and fleet-level
monitoring. Multiagent systems,!'®*¢"~1% particularly when
coupled with DTs, distribute tasks such as sensing, detection,
and control, enabling closed-loop defect mitigation through RL
or model predictive control.

8.3.5. Explainability and Human—-Al Collaboration

Transparent decision-making is essential for adoption.
Explainable AI methods (saliency maps, counterfactuals, cali-
brated uncertainty) provide insight into defect alarms, while
LLM- and RAG-based copilots translate predictions into action-
able instructions. New forms of interaction are also emerging:
the integration of augmented reality (AR) and VLMs has been
shown to improve operator training, and similar methods could
be adapted for automatic defect detection. By combining real-
time data streams with AR overlays, systems could highlight
inconsistencies, misalignments, or process anomalies as they
occur, offering both automated detection and human-readable
explanations.!*””!

8.4. Summary and Outlook

Al-driven real-time defect detection is transforming AM
by improving quality control, reducing material waste, and
optimizing processes. However, widespread adoption remains
constraint by several challenges: data scarcity and the absence
of benchmarks, annotation complexity, defect heterogeneity
and process variability (including hidden flaws), real-time con-
straints with limited closed-loop integration, and human factors
related to explainability and trust. Addressing these barriers
requires an integrated framework that combines advanced Al
methods with physics-informed modeling and modern system
architectures. Generative Al, diffusion models, and voxel-based
multimodal fusion can mitigate data scarcity, while LLMs with
RAG, active learning, and adaptive learning reduce annotation
costs by integrating expert knowledge and unlabeled sensor
streams. PINNs and hybrid models coupling ML with FEA
embed physical constraints, improving interpretability and
enabling better generalization across materials and processes.
IoT-enabled sensor networks with edge—cloud infrastructures,
supported by multiagent systems and DTs, provide the real-time
foundation for scalable, closed-loop monitoring and corrective
action. Finally, explainable Al, uncertainty calibration, and
AR/VLM-based operator interfaces are essential for building
trust and ensuring industrial usability. Future efforts should
focus on expanding high-quality datasets, deploying adaptive
multimodal and multiagent pipelines, and strengthening
explainability to deliver cost-effective, reliable, and industrial-
scale Al-driven defect detection across diverse AM
technologies.
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9. Real-Time Al-Driven Structural Validation for AM

Austin Downey”, Yanzhou Fu, Lang Yuan.

9.1. State of the Art

Validation in AM refers to a staged demonstration that a defined
process consistently produces parts meeting functional and
structural requirements under realistic manufacturing variabil-
ity. In situ structural validation, enabled by AI2AM, is poised
to transform AM from primarily prototyping-focused to viable
production of structurally critical components. As shown in
Figure 13, effective AI2AM-based in situ structural validation
would allow printed components to be taken from the print
bed and placed into the next natural manufacturing step or
directly into service, dramatically reducing production time,
inspection demands, and overall costs. Moreover, adopting
AI2AM techniques would streamline quality assurance pro-
cesses, particularly benefiting industries, such as aerospace
and automotive, where component performance is safety-critical.
However, ensuring structural performance insitu and in real-
time remains challenging due to the computational complexity
of model-based methods and the extensive data requirements
of data-driven approaches. Accordingly, validation should be
reported with deployment-oriented metrics, including per-layer
calibrated strength or pass/fail accuracy with confidence inter-
vals, defect-detection sensitivity and specificity, and cross-setup
robustness across machines and operators.

Model-based validation methods, typically involving FEA, pro-
vide accurate physics-based predictions of structural behavior but
are computationally expensive and typically infeasible for online
assessment. For instance, Garg and Bhattacharya showed that
FEA effectively models the elastoplastic behavior of FDM com-
ponents, highlighting the influence of layer thickness and raster

Figure 13. The overview of insitu structural validation to ensure the
printed component quality.
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orientation on failure.'”" However, its computational complexity
limits its use in real-time applications. Scapin and Peroni
developed efficient FEA models that integrate real infill
geometries and transversely isotropic material behavior, yet these
simulations remain computationally intensive for real-time
monitoring.!*”?

Purely data-driven methods excel at rapid defect detection
but struggle to generalize across diverse defect types and
print conditions. For instance, Avro et al. achieved over 97%
accuracy in detecting under-extrusion defects with a CNN-YOLO
(Convolutional Neural Network-You Only Look Once) framework
but stressed the need for extensive labeled data.l'”*! Similarly, Jin
et al. demonstrated real-time anomaly localization using YOLO
and DeepLabv3 networks, though their system required con-
trolled imaging setups.!*’*

The model-based and physics-driven paradigms are not mutu-
ally exclusive; typically, data-driven processes are used for proc-
essing sensor data.l"””! Our recent work highlights a combination
of these approaches. For a data-driven decision-maker, an
accumulation-threshold-based approach leveraging CNN rapidly
identifies defects during printing, enabling immediate decisions
on structural integrity with over 90% accuracy.'”® In parallel, we
developed a physics-based simulation-in-the-loop framework that
integrates U-Net image segmentation with real-time updated
FEA models.'””) This hybrid approach incorporates defect data
into structural models during printing, achieving predictive accu-
racy within 5% of validated tensile strengths. By leveraging
model-based methods, initial DT models can evolve throughout
the product’s lifecycle, incorporating real-time sensor data and
inspections to enhance long-term structural assessment and pre-
dictive maintenance.**>¢!

Recent work on agentic and multiagent systems offers a com-
plementary route to reduce reliance on large labelled datasets and
to incorporate physics constraints.'7#78% In these frameworks,
coordinated agents plan experiments, curate or synthesize data,
invoke physics-based solvers and property models as tools, and
adapt decisions based on in situ observations. Studies across sci-
ence and engineering report coordinated hypothesis generation,
design workflows, and physics-informed simulation scheduling,
with improvements in sample efficiency and robustness under
distribution shift. Within AI2AM, such layers are best viewed
as a future integration path: agents can propose targeted
parameter sweeps and defect-injection plans, enforce process
and design constraints through tool calls, and prioritize prints
that maximize expected information gain under domain
randomization.

9.2. Scientific Challenges and Technical Limitations

While AI2AM-based in situ structural validation shows signifi-
cant promise, several fundamental challenges limit broader
adoption: 1) Computational complexity of real-time physics-
based methods: physics-based validation methods, particularly
real-time FEA, require substantial computational resources.
Advances could be measured by achieving reliable structural
assessments within seconds per layer, even for complex geome-
tries. 2) Scalable and robust sensing systems: current sensor
technologies for defect detection often rely on high-cost,
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high-resolution imaging or delicate instrumentation, limiting
industrial scalability. Progress can be quantified by reducing sen-
sor costs below 5% of total system acquisition cost and achieving
operational reliability above 95% across diverse manufacturing
environments. 3) Generalization capabilities of data-driven meth-
ods: data-driven approaches typically demand extensive training
data and struggle to generalize to new or unforeseen defect sce-
narios. Improvements would be demonstrated by achieving
defect detection accuracy exceeding 95% for defect types or con-
ditions not explicitly represented in the training dataset, signifi-
cantly reducing the need for retraining. 4) Integration and
establishment of AI2AM industry standards: integrating
AI2AM techniques into existing manufacturing processes and
quality assurance frameworks faces substantial logistical and reg-
ulatory barriers. Success would involve developing widely recog-
nized and adopted international standards (e.g., ASTM, ISO) that
facilitate compatibility and interoperability across different
industries and manufacturing environments. 5) Cybersecurity-
assured reliability, certification, and industry acceptance: demon-
strating the reliability of Al-based validation under stringent
cybersecurity measures, particularly for critical structural compo-
nents in aerospace and automotive industries, is paramount.
Successful outcomes would include regulatory approval by rele-
vant certification bodies (such as the FAA for aerospace or
NHTSA for automotive components) and adoption by major
industry stakeholders.

9.3. Scientific Pathways and Technological Developments

Meeting the identified challenges in AI2AM-based in situ
structural validation will require significant advances in science,
technology, and standardization frameworks. Key areas of
advancement include: 1) Computational efficiency and

physics-informed Al: advancements in physics-informed ML,
including methods like PINNs,!"7817% will enable accurate,
real-time structural assessments with significantly reduced
computational demand. By merging physics-based FEA models
with AI approaches, these techniques promise rapid, layer-by-
layer validation without compromising prediction accuracy.
2) Edge Computing for Sensor Data Processing: To minimize
data transfer and dependency on centralized computing infra-
structure, advances in edge computing"®® and embedded Al
processors (ASICs, FPGAs)"®Y are critical. Developing robust,
self-contained edge devices capable of performing in situ data
processing and providing immediate, reliable “go/no-go” valida-
tion decisions directly at the manufacturing station, as shown in
Figure 14, will ensure manufacturing continuity, enhance
system redundancy, and significantly reduce infrastructure costs
and maintenance complexity. 3) Integration and Industry
Standardization: Establishing unified, widely accepted standards,
testing procedures, and interoperability frameworks is essential
for seamlessly integrating AI2AM technologies into existing
manufacturing ecosystems.®*'®’l Collaborative efforts between
academia, industry leaders, and regulatory agencies will be
vital to defining clear guidelines, protocols, and best practices,
fostering industrial confidence, regulatory alignment, and
streamlined adoption of Al-driven structural validation pro-
cesses. 4) Cybersecurity Best Practices for AI2AM Systems:
System designers and manufacturers must adopt robust cyberse-
curity protocols at the sensor, controller, and cloud-management
levels to safeguard AI2AM systems. Implementing secure com-
munication standards, routine vulnerability assessments, and
intrusion detection measures is critical for industry stakeholders.
While edge computing inherently reduces some cybersecurity
risks by limiting central points of vulnerability, rigorous attention
to security practices remains essential.

Figure 14. Layered system combining sensing and edge computing for real-time, low-cost in situ structural validation.
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9.4. Summary and Outlook

AI2AM-based in situ structural validation holds significant
potential for transitioning AM into the mainstream production
of safety-critical components. Future research efforts should pri-
oritize three key directions: improving computational efficiency
through physics-informed Al approaches, advancing edge com-
puting capabilities to enable robust on-site data processing, and
developing standardized, production-ready protocols that extend
beyond controlled laboratory settings to enable seamless integra-
tion into industry practice. Establishing clear, quantifiable met-
rics will be essential for measuring progress and ensuring
tangible outcomes. Successfully addressing these areas will
result in substantial reductions in production time, inspection
efforts, and costs, facilitating broader industrial acceptance
and enabling safer, more sustainable manufacturing practices.

10. CV-Based Al in AM

Tsz-Kwan (Glory) Lee”, Arbind Agrahari Baniya, and Eisha
Waseem.

10.1. State of the Art

CV is a key enabler of AI2AM, transforming traditional DTs
into smarter systems with visual perception and adaptive
intelligence.’”! In AM workflows where challenges like surface
inconsistency, layer misalignment, and structural distortion
compromise structural integrity, product quality, and perfor-
mance,"®" integrating CV provides spatial and geometric context
to support more informed process-aware decisions.'®!

Figure 15 illustrates five key stages that shaped the evolution
of AI2AM. The development originated from the concept of DT
in the 1960s during NASA’s Apollo program, where physical
spacecraft replicas were used alongside digital simulations to
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telemetrically monitor and analyze missions."*'#”) This pro-
gression builds upon imaging advancements since the 1990s,
when RGB images and thermal cameras enabled offline quality
control. Although initially disconnected from control loops,
these early systems laid the groundwork for CV-based automa-
tion. From the 2020s, enabled by IoT, edge computing, and
advanced sensors, AM platforms began integrating live camera
feeds into control loops, allowing dynamic correction based on
visual input, marking the Industry 4.0 era."®®! More recently,
this has led to AI vision analytics for DTs AM systems, where
DL interprets visual data to support adaptive decision-making
and 3D reconstruction of print states using high-dimensional
sensor data.'®!

Recent breakthroughs in AI2AM include: 1) Advanced sensors
and data acquisition: in situ monitoring systems via camera
imaging, acoustics, multimodal data acquisition using coaxial
monitoring, X-ray computed tomography, and spectroscopic sen-
sors, combined with edge computing and IoT networks, enable
precise data capturing."®” 2) Sophisticated simulation models:
high-fidelity multiphysics solvers, digital thread integrations,
and immersive Augmented Reality (AR)/Virtual Reality (VR)
simulate printing behaviors and test alternative designs to pre-
vent defects.!'**°!] 3) Integration of Al-driven optimization and
control: Physics-informed ML, generative Al-powered design
and process parameter tuning, anomaly detection, predictive
maintenance, neural networks, edge Al, and federated learning
to analyze vision data, classify defects, improve decision-making,
and enable adaptive control under uncertainty.!**"!

The convergence of CV and Al has resulted in a new genera-
tion of CV-AI solutions in AM. CV is becoming a core sensing
strategy, enabling DTs to act as intelligent agents capable of
learning and adapting. It offers a data-driven approach to ana-
lyze patterns and make real-time predictions, improving pro-
cess accuracy and efficiency, reducing material waste, and
enhancing final product quality, broadening AM’s applicability
across domains.'*%

Figure 15. Evolution of CV enabler in AM, highlighting key technological milestones, functional advancements, and industrial applications from early
simulation models to adaptive Al-enabled vision twins in smart AM systems.
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10.2. Scientific Challenges and Technical Limitations

The growing adoption of AI2AM brings exciting opportunities
but also key challenges that must be addressed for broader
implementation and societal benefits. These challenges can be
grouped into technical, economic, and ethical dimensions.

Technical challenges include: 1) Data acquisition and processing:
managing large volumes of sensor data in real-time requires effi-
cient acquisition systems and robust storage and processing
infrastructure.'®*! 2) 3D modeling and reconstruction: accurate ste-
reo imaging registration and 3D reconstruction remain complex,
especially when comparing predicted models to true geome-
tries."** 3) Model accuracy and validation: reliable simulation out-
comes depend on high-fidelity models, validated material
properties, and rigorous testing.'*! 4) Real-time performance:
high computational demands, especially with complex geome-
tries, require optimized algorithms and capable hardware.[*”!
5) System integration and interoperability: integrating DTs into
existing AM workflows is limited by platform compatibility.!**®!
6) Cybersecurity: As AI2AM systems become more intercon-
nected and reliant on data exchange, securing data and protecting
intellectual property are critical.'”!

Economic challenges focus on the cost of implementation,
especially for small and medium-sized enterprises (SMEs).!'*®!
High investment requirements for sensors, computing infra-
structure, and skilled expertise limit accessibility, especially in
early-stage, nonstandardized environments. This hinders
advancements due to SMEs’ limited capacity for R&D required
to realize AI2AM’s potential.

Ethical challenges involve bias and fairness. AI models trained
on imbalanced or incomplete data can lead to inaccurate or dis-
criminatory outcomes, raising concerns around trust and

accountability. Ensuring fairness and addressing bias are crucial
for the responsible use of AI2AM.[*"

10.2.1. An AI2AM Case Study

While the pipeline in Figure 16 showcases an example of
CV-based AI2AM application, it also reflects the multifaceted chal-
lenges, include 1) Technical challenges: AI2AM systems require
precise depth estimation, segmentation, and calibration, yet these
remain difficult under varying lighting, surface textures, or complex
geometries. Robust algorithm design and extensive validation with
diverse datasets are essential but still evolving. 2) Economic chal-
lenges: the cost of developing and maintaining ML-driven inspec-
tion systems is high. Investments in computing infrastructure, data
storage, and skilled personnel can be prohibitive, especially for
manufacturers without a clear short-term return on investment.
3) Ethical challenges: biases in training data can cause misclassifi-
cation of defective parts. Without transparency in how decisions are
made, these errors complicate certification and reduce trust in
AI2AM technologies.

10.3. Scientific Pathways and Technological Developments

10.3.1. Scientific and Technical Progress

While challenges continue to limit the widespread adoption of
CV-AI DTs in AI2AM, they also drive significant innovation
and research. Complexities in data acquisition, 3D reconstruc-
tion, and real-time responsiveness are driving the development
of multimodal sensing, edge computing, and high-frequency
data processing technologies. Simultaneously, new modeling
methods, such as implicit surface representations, neural

Figure 16. A case study of a ML pipeline for assessing the geometric accuracy of a 3D-printed object via RGB image-based reconstruction and point cloud

comparison to the CAD model.
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radiance fields (NeRFs), and differentiable simulations, are
enabling higher fidelity and responsiveness in DT systems.

Emerging research is focused on self-adaptive DTs capable of
online learning and autonomous control. Integrating RL and
continual learning into AM workflows offers pathways to
closed-loop optimization. Furthermore, hybrid approaches bridg-
ing the gap between data-driven and physics-based modeling
with ML are also proving effective in addressing model accuracy,
scalability, and interpretability.

10.3.2. Industry, Economic, and Societal Impact

The industrial impact of CV-based AI2AM is projected to be
transformative across sectors, including aerospace, biomedical,
automotive, and advanced manufacturing, where precision,
quality assurance, and traceability are critical. AI2AM enables
predictive defect detection, in situ process correction, and part cus-
tomization, particularly valuable for high-performance and safety-
critical applications. In smart manufacturing environments,
AI2AM also contributes to digital supply chain integration, real-
time validation, and achieving zero-defect manufacturing goals.

From an economic perspective, while upfront costs remain
high, cloud-based deployment and CV-based AI2AM-as-a-service
models are lowering entry barriers for SMEs. These approaches
enable scalable, on-demand access to advanced AI2AM capabili-
ties without requiring substantial capital investment. Societally,
AI2AM supports sustainability by reducing waste, optimizing
energy use, and enabling circular manufacturing practices. It
also stimulates new skills development at the intersection of
Al, simulation, and manufacturing engineering.

Ethical and regulatory considerations are increasingly rele-
vant. Bias in Al models, often stemming from skewed or incom-
plete training data, poses risks for decision-making. As a result,
research is shifting toward fairness-aware modeling and explain-
able AI frameworks specifically designed for industrial applica-
tions. Concurrently, regulatory bodies are advancing standards
for DT validation, cybersecurity, and Al transparency to support
safe and trustworthy deployment.

10.3.3. Future Directions

In the coming decade, CV-based AI2AM will drive autonomous,
self-improving manufacturing by combining real-time learning,
visual reasoning, and adaptive control. Advancements in contin-
ual learning and vision Al will support closed-loop AM, acceler-
ating production and enhancing quality. Widespread adoption
will depend on collaboration, ethical Al governance, and stan-
dardized validation to ensure trustworthy, sustainable systems.

10.4. Summary and Outlook

The integration of CV into DTs for AM represents a transforma-
tive synergy toward addressing critical challenges in quality, effi-
ciency, and reliability. CV-AI technologies are reshaping AM by
linking physical processes with intelligent models capable of
learning and adaptation. This evolution moves beyond workflow
automation toward self-adaptive manufacturing systems that
optimize production in real time, supporting gains in precision,
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sustainability, and customization. Despite notable advance-
ments, challenges remain in achieving real-time performance,
integrating with legacy infrastructure, and addressing ethical
concerns such as bias and data transparency. However, ongoing
research in areas such as RL, hybrid modeling, and decentralized
Al is addressing these limitations, suggesting that these hurdles
are transitional rather than permanent.

Looking forward, AI2AM is positioned as a key enabler in the
digital transformation of manufacturing. As regulatory frame-
works mature and access to cloud-based platforms increases,
broader adoption will become viable even for resource-limited
industries. Realizing the full potential of CV-AI in AM will
require sustained innovation, ethical design, workforce training,
and strong collaboration across academia, industry, and govern-
ment. Together, these efforts will help establish a new era of
intelligent, responsible, and resilient manufacturing systems.

11. Al-Controlled Closed-Loop 3D/4D Printing

Abdul Rahman Sani, Abbas Z Kouzani, Ali Zolfagharian*.

11.1. State of the Art

The adoption of Al has significantly advanced AM, particularly
through the implementation of closed-loop control systems for
3D and 4D printing. Traditional AM approaches frequently
employed open-loop strategies, where predetermined process
parameters remained constant throughout fabrication. These
static methods were limited in their ability to manage process
variations, resulting in inconsistencies in print quality, geometry,
and material performance. In contrast, Al-powered closed-loop
frameworks enable real-time sensing, decision-making, and con-
trol adjustment, providing a dynamic and adaptive printing
process. 220201

Closed-loop Al control systems utilize data from thermal cam-
eras, acoustic sensors, visual feedback, and other in situ moni-
toring tools. ML techniques, including RL, DTs, and predictive
neural models, leverage this data to autonomously address anom-
alies in real-time.?°>?%! In the context of 4D printing, where
time-dependent material transformations are essential, Al plays
a pivotal role in forecasting actuation behaviors and aligning
stimuli-responsive outputs with design objectives.*®171-204]

A prominent example of this integration is the recent
framework proposed by Sani et al., which combines Al-powered
vision systems with multilayer process monitoring for adaptive
control during 3D/4D printing.'®”? Similarly, Pugliese et al.
demonstrated an Al-enabled pathway for biomedical 4D-printed
structures using real-time optimization of smart polymers.?%
Other recent developments include closed-loop Q-learning
frameworks for personalized drug-delivery structures??® and
predictive control for thermally responsive composite print-
ing.?°! Beyond academic innovation, industrial interest in
Al-based feedback control is growing in applications such as
robotic AM, hybrid subtractive—additive systems, and medical
microdevices. DT technologies now complement these setups,
creating virtual replicas of physical processes to enable proactive
decision-making and predictive simulation.[20%2%]
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Traditional open-loop systems rely on pre-set parameters,
making them vulnerable to process disturbances such as mate-
rial inconsistency or environmental changes. Recent advances
are increasingly focusing on embedding sensors directly into
3D printers—most notably, acoustic sensors and CV systems.
These sensors continuously capture real-time data on printing
dynamics, such as nozzle vibration, flow anomalies, or layer
defects. However, the transformative potential arises when this
data is processed through Al algorithms within a closed-loop con-
trol system. Figure 17 illustrates this intelligent feedback loop,
wherein real-time monitoring, defect detection, and Al-driven pro-
cess control converge to dynamically adjust printing parameters
such as temperature, speed, and extrusion rate for optimal results.
This paradigm shift enables in situ error correction, reducing reli-
ance on post-processing inspection, minimizing waste, and open-
ing pathways for defect-free, high-precision manufacturing.

11.2. Scientific Challenges and Technical Limitations

Despite significant advancements, the implementation of Al-
based closed-loop systems in 3D and 4D printing faces several
technical and practical challenges. One of the foremost issues
is the integration and synchronization of real-time sensor data
with AI decision-making modules. Achieving low-latency data
processing from multimodal sources, such as thermal imaging,
optical cameras, and acoustic sensors is essential but remains
computationally demanding and sensitive to environmental
noise.[202,207]

A second major hurdle is the development of robust, general-
izable AI models. Most RL frameworks are currently trained in
simulation environments or narrowly defined material/process
settings. This limits their ability to new materials, geometries,
or printer platforms without extensive retraining.*°*?%! In 4D
printing, where materials exhibit time-dependent or stimulus-
responsive behaviors, model complexity increases further, often
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requiring hybrid physics-informed learning strategies that are
not yet standardized.

Data scarcity and quality also impede closed-loop optimiza-
tion. Unlike traditional manufacturing datasets, AM processes
often lack consistent, labeled data across diverse printers, mate-
rials, and environmental conditions. This leads to overfitting and
suboptimal performance in real-world deployments.*%’]
Additionally, collecting high-resolution, in-process defect data
with reliable ground truth remains a bottleneck, particularly in
high-throughput environments.

In addition to sensor-driven feedback, two complementary
optimization paradigms are emerging in Al-augmented AM: tool
or instruction-based and voxel-based approaches. Tool or
instruction-based methods operate at the G-code or process-
parameter level, directly modifying extrusion rate, nozzle tem-
perature, or print speed in response to detected defects.[2%%
These methods are computationally efficient and readily imple-
mentable on existing printers, but they may overlook localized
microstructural variations. In contrast, voxel-based optimization
represents the build volume as a 3D grid of discrete elements,
enabling fine-grained control of material deposition at the voxel
level.?®! While voxel approaches achieve higher resolution in
defect localization and correction, they require intensive compu-
tation and significant memory overhead, making real-time
deployment on embedded systems challenging. Recent work
is exploring hybrid strategies, where voxel-level anomaly detec-
tion is paired with instruction-level corrective actions, balancing
precision with practical feasibility.2%8!

From an industrial perspective, scalability and system interop-
erability are significant challenges. Closed-loop systems must be
hardware-agnostic to support wide adoption across different
printer architectures. However, most current systems are tightly
coupled with specific machines or materials, limiting flexibility
and commercialization.?*21%11]

Cost and complexity also pose barriers to mainstream adop-
tion. Integrating smart sensors, edge computing modules, and

Figure 17. An illustration of the closed-loop feedback loop 3D printing. Reproduced with permission under Open Access."” Copyright 2024, Wiley.
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adaptive controllers into AM platforms increases capital and
operational expenditure. Furthermore, lack of regulatory frame-
works and standardization for Al-enabled adaptive printing
systems presents challenges in certification, especially in
safety-critical applications like medical or aerospace devices.*'?
In the long term, cybersecurity and real-time system validation
will become critical as autonomous systems are connected to
cloud-based infrastructures and DTs. Ensuring trustworthy,
tamper-proof Al decisions in a closed-loop pipeline will require
explainable AI (XAI), secure communication protocols, and
robust fault-detection strategies.

11.3. Scientific Pathways and Technological Developments

To overcome the current limitations in Al-based closed-loop
3D/4D printing, recent research has made significant strides
in algorithmic development, hardware integration, and real-time
computational frameworks, as illustrated in Figure 18. A variety
of ML methods, including DTs, RL, and SVM can be employed
for this purpose. One of the most promising areas is the use of
RL and DT to simulate and optimize printing outcomes before
and during fabrication. DTs enable real-time feedback by creat-
ing virtual replicas of the physical printing process, allowing
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predictive model updates and adaptive decision-making during
print runs.?*21%

Multimodal sensor fusion frameworks have emerged to
enhance data quality and process visibility. These systems inte-
grate thermal cameras, machine vision, acoustic emission detec-
tors, and layer-by-layer optical imaging, and feed this data into DL
models for accurate anomaly detection and process correction.
Recent advances allow this entire loop to be executed at the edge
using lightweight Al models, reducing the latency associated
with cloud-based inference.?°!

Another major scientific development is the integration of
PINNs and hybrid models that combine first-principles physics
with data-driven learning. These models significantly improve
the generalization of Al in unfamiliar material environments
or with previously unseen geometries.”””) For 4D printing,
where materials respond dynamically to environmental stimuli,
ML models are now being trained not only on shape or structural
fidelity but also on temporal actuation behavior, enabling better
prediction and control of stimuli-induced transformations.!

In addition to PINNs and hybrid models, agentic and multi-
agent approaches have recently been introduced as promising
alternatives. Unlike conventional ML or PINNs, which require
extensive, high-quality datasets and are limited outside their

Figure 18. a) Al-enabled closed-loop system integrating sensor feedback and optimization framework for adaptive 3D printing. Reproduced with per-
mission under Open Access.'% Copyright 2024, Wiley. b) Al-driven technology stack for closed-loop 3D/4D printing.
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training distribution, agentic models demonstrate self-learning
and reasoning abilities by simulating their own experimental
data and operating under physics-based constraints. Early dem-
onstrations, such as “Agentic Al for Scientific Discovery”,>72*3!
multiagent frameworks for data-driven discovery,2'*l adaptive
self-learning systems,** and Mech Agents for engineering appli-
cations,!"*® highlight their potential to enable robust defect rea-
soning, adaptive control, and generalization across materials and
geometries in closed-loop 3D/4D printing.

Moreover, the closed-loop 3D /4D printing can also be viewed as
a true multiscale materiomic problem, where atomic and
molecular-level interactions influence mesoscopic process dynam-
ics and macroscopic performance. Physics-informed Al can be
enhanced by coupling atomistic simulations such as molecular
dynamics or density functional theory with continuum-scale mod-
els to bridge structure-property relationships across scales. Recent
work such as Structure-aware Graph Neural Network based Deep
Transfer Learning Framework by Gupta et al.*'* demonstrates that
transfer learning with GNNs across diverse datasets improves
predictions even in out-of-domain settings. Another example is
the Materials Graph Library (MatGL) by Ko et al.**® an open
source graph DL library for materials science which supports
invariant and equivariant graph architectures and scales to large
atomic data. These materiomic strategies show promise for cap-
turing multiscale behaviors, though they bring significant compu-
tational complexity. Ensuring real-time implementation remains
challenging; lightweight graph models, edge-Al accelerators,
and reduced-order physics models will be essential enablers for
practical closed-loop 3D/4D printing.

Interoperability and platform-agnostic architectures are also
being actively explored. Researchers have begun developing Al
middleware that can be integrated with different slicers, control
boards, and printer firmware, allowing easier translation of Al
models across machines."”” Additionally, standardized data
pipelines and open-source datasets are under development to
support more consistent training and benchmarking.

From an industrial and societal perspective, these technolo-
gies are driving innovation in precision bioprinting, adaptive
medical implants, autonomous soft robotics, and aerospace
structures. The incorporation of secure communication proto-
cols and blockchain-based traceability ensures data integrity
and verifiability in mission-critical applications.*'”)

Looking ahead, we anticipate a growing emphasis on explain-
able AI (XAI) and Al auditing mechanisms that make closed-loop
decisions interpretable, fostering trust and regulatory accep-
tance. These advances will facilitate closer collaboration between
industry, academia, and policymakers, supporting standardiza-
tion and wide-scale deployment of Al-augmented AM systems.

11.4. Summary and Outlook

Al-based closed-loop 3D and 4D printing technologies are rede-
fining the boundaries of intelligent manufacturing. By embed-
ding ML, real-time sensing, and adaptive control into additive
processes, these systems move beyond traditional trial-and-error
fabrication toward self-correcting, data-driven manufacturing. By
harnessing real-time data from acoustic, thermal, and visual sen-
sors, and leveraging AI to process this data dynamically,
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manufacturers can adjust designs and processing conditions
on-the-fly to mitigate defects and optimize performance. This
closed-loop system seamlessly integrates intelligent monitoring
with autonomous process control, paving the way for fully adap-
tive manufacturing environments. While current deployments
are primarily research-focused, advances in sensor technology,
Al algorithms, and computational infrastructure are rapidly
accelerating industrial adoption. Future research will likely focus
on expanding cross-platform applicability, improving model
explainability, and embedding predictive maintenance capabili-
ties into AM systems. Ultimately, this evolution will not only
enhance part quality and production efficiency but will also
enable the realization of truly autonomous, intelligent factories.

12. Al for Soft Robotic AM

Yijia Wu, Markus P. Nemitz"

12.1. State of the Art

Soft robotics leverages compliant elastomeric materials to design
robots capable of safely and adaptively interacting with delicate
and unstructured environments, tasks that remain challenging
for conventional rigid robots. Unlike traditional robots con-
structed by assembling discrete mechanical components, soft
robots are increasingly designed as integrated, monolithic mate-
rial systems, enabled through advances in AM. This shift from
assembled structures to fully integrated systems aligns closely
with the concept of physical intelligence, wherein the morphol-
ogy and material properties of a robot directly contribute to its
intelligent behavior,?'® representing a fundamental departure
from conventional silicon-based computational approaches.
Recent developments have further advanced this vision through
techniques such as the direct 3D printing of fluidic circuits that
serve as embedded controllers,*'???”! paving the way toward
fully autonomous robotic materials.!'®!) Advances in AM have
expanded the range of compatible materials and improved the
scalability of soft robot fabrication.!**®! These innovations enable
soft robots for applications in rehabilitation, minimally invasive
surgery, wearable devices, precision food handling, search and
rescue, and space exploration, among others.

However, soft lithography remains the most commonly used
manual fabrication technique in soft robotics.**!! Despite wide-
spread use, soft lithography is expert-driven, labor-intensive, and
challenging to reproduce, particularly due to the curing proper-
ties and air-bubble-induced defects common with additive-curing
elastomers. These challenges drive a significant demand for tran-
sitioning manual fabrication techniques to reliable AM methods
for soft robots, promising reproducibility and consistency in soft
robot production.””?! Unfortunately, current digital fabrication
approaches, FFF in particular, cannot yet reliably produce
defect-free prints. Even small printing errors often lead to leaks,
severely compromising soft robotic performance.*” Closed-loop
printing plays a fundamental role in this transition by incorpo-
rating real-time defect detection and dynamic correction capabil-
ities, employing custom printer software and sensors, such as
cameras, lasers, infrared sensors,'”’! to identify and rectify
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Figure 19. Examples of print defects and their impact on soft robotic components using FDM printing. a) Examples of common defects in the AM of soft
robots. Macroscopic and microscopic views show print defects from various sources, often caused by material quality issues or suboptimal print param-
eters and b) Microscopic view of the influence of correction on the soft actuator and leakage test comparing actuators fabricated with and without defects.

defects through localized adjustments of print parameters or tar-
geted reheating (Figure 19).

Digital fabrication of soft robots holds significant promise but
faces substantial technical challenges. The compliant nature of
soft materials causes fabrication defects to be amplified during
structural deformation, such as during actuator inflation, ulti-
mately compromising robotic performance. As a result, effective
AM of soft robotic systems demands highly reliable and repro-
ducible processes capable of ensuring impermeability and robust
multimaterial integration. Current AM techniques frequently
encounter material-specific challenges, particularly with thermo-
plastic polyurethane (TPU). TPU filaments exhibit buckling
under extrusion forces, especially in Bowden-style extruder con-
figurations. Variations in filament quality, stemming from incon-
sistencies in material composition, inaccurate spooling, and
sensitivity to ambient humidity, further degrade print reliability.
Since optimal printing parameters must be meticulously tuned
for each filament batch and individual printer, achieving scalable,
repeatable production remains challenging with hardware solu-
tions only. To address these challenges, integrating Al to close
the control loop, rather than relying solely on expert human inter-
vention, offers a promising strategy to substantially improve both
the reliability and scalability of AM processes for soft robotics.

12.2. Scientific Challenges and Technical Limitations

Although substantial research has addressed defect detection
for AM, these studies predominantly target conventional rigid
polymers such as PLA and ABS, while closed-loop AM for
elastomers, especially relevant for soft robotics, remains
underexplored.’®) This gap stems from the interdisciplinary
expertise required across robotics, materials science, AM, and
Al-supported detection. Existing detection methods typically
emphasize surface defects that are visually apparent, but soft
robotic applications demand precise detection of internal
micro-defects, such as voids, which can lead to air leakages
and functional failure. Establishing clear correlations between
internal defects and robot performance is essential vyet

Adv. Intell. Syst. 2026, €202500484 €202500484 (37 of 54)

challenging, particularly when attempting to connect localized
leaks to specific internal anomalies. Advanced techniques like
micro-computed tomography, high-resolution sensing, and sensor
fusion from multiple sensor arrays show promise for accurate
defect identification, but these methods are often expensive and
computationally intensive.****** Processing large volumes of sen-
sor data in real time for reliable detection remains an open chal-
lenge.””) Correction methods specifically adapted for soft
elastomeric materials present unique complexities that fundamen-
tally differentiate them from traditional rigid-material printing
approaches. The deformable nature of elastomers leads to
nozzle-induced deformation during extrusion, pronounced mate-
rial oozing due to their low viscosity, and necessitates inherently
slow print speeds to achieve void-free, leak-proof layers. The key
parameters and strategies for reliable real-time correction and
effective defect prevention in soft-material AM remain largely
unknown. Advancing closed-loop printing for soft robots requires
systematic approaches that go beyond reactive correction to proac-
tively mitigate errors before they occur. This entails more precise
control over print parameters, enhanced detection and decision-
making frameworks, and the development of comprehensive
models that accurately capture the complex interactions between
soft materials and print process dynamics (Figure 20).

12.3. Scientific Pathways and Technological Developments

Addressing the unique challenges of closed-loop AM for soft
robotics requires targeted advances in defect detection, correc-
tion, and prevention. A promising direction for improving defect
detection involves initially deploying high-accuracy, high-cost
sensors to collect precise measurements, establishing a reliable
ground-truth dataset of critical defects. These detailed measure-
ments can subsequently be leveraged to augment lower-cost
sensing systems, potentially through DL knowledge distillation,
so that inexpensive sensors can achieve comparable accuracy
without continuous reliance on expensive hardware.[?**22¢]
Sensor fusion, where multiple low-cost sensors are integrated
using learning-based algorithms, offers another pathway to
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Figure 20. Conceptual overview of an Al-enabled closed-loop AM system for soft robots. The system integrates multimodal sensing, neural network-based
defect detection, and adaptive control to optimize print parameters in real time, enabling the direct fabrication of airtight, ready-to-use soft robotic systems.

improve detection accuracy while maintaining system affordabil-
ity. While learning-based methods have already outperformed
traditional CV techniques in detecting irregular anomalies,**”!
there remains a lack of high-quality datasets specifically focused
on defects relevant to soft robot printing. Automating data col-
lection pipelines and incorporating state-of-the-art DL methods
will be critical in achieving high accuracy and real-time defect
detection capabilities.”?®! For defect correction, it is crucial to
establish robust correlations between print parameters and the
emergence of specific defects, enabling precise, targeted inter-
ventions.'”* RL and predictive modeling could help develop
adaptive correction strategies that optimize print parameters
based on live feedback.”*”’ Comprehensive studies evaluating
the impact of different correction strategies on final robot perfor-
mance are currently lacking and must be expanded. Importantly,
closed-loop systems should extend beyond reactive symptom cor-
rection and facilitate root cause analysis to systematically elimi-
nate defect origins. Regarding defect prevention, research efforts
should prioritize holistic optimization encompassing geometry
design, slicer configurations, and a comprehensive set of print
parameters, overcoming the narrow parameter adjustments typ-
ically examined in existing work. Techniques such as Bayesian
optimization,*” topology optimization,’®” and generative
design!®*" could help explore broader design and process spaces.

To ensure widespread adoption, future systems should adopt
modular architectures, standardized interfaces, and cloud-based
infrastructures to enable integration across different hardware
and software platforms. Collaboration with industry, through
co-development, shared benchmarks, and DTs, will be crucial
to validating these technologies in real-world environments.
Open-source datasets and frameworks will further support
community-driven innovation and accelerate progress in scal-
able, intelligent AM systems for soft robotics.
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12.4. Summary and Outlook

Future research directions in AI2AM present substantial oppor-
tunities for transformative advancements across academia,
industry, and society. Although defect detection has received con-
siderable attention, future developments must prioritize reliable
yet inexpensive detection solutions, leveraging sensor fusion
techniques to lower costs and facilitate widespread adoption.
Broader deployment of these accessible systems will generate
extensive, shareable datasets essential for training robust DL
algorithms. Error prevention and correction remain significantly
under-researched, particularly given the unique challenges posed
by soft materials. Near-term research efforts are thus expected to
make substantial progress in these areas, particularly by estab-
lishing clear correlations between internal print defects and func-
tional failures such as leakage, and by developing strategies that
optimize geometry, slicer configurations, and print parameters
proactively. The ultimate goal is to establish fully automated
design-to-fabrication pipelines, where Al-driven recommenda-
tions embedded directly into CAD and slicing software intelli-
gently guide adjustments to the design, print orientation, and
print parameters. These recommendations will comprehensively
account for specific material properties, intended functionality
such as the pneumatic characteristics of a soft actuator, and inte-
grate critical factors like the printer model and laboratory envi-
ronment, including humidity levels, to ensure reliable and
consistent print quality prior to initiating the fabrication process.
Such advancements will significantly enhance industrial adop-
tion, enabling reliable and cost-effective manufacturing crucial
for sectors including healthcare (custom prosthetics, surgical
tools), agriculture (precision food handling), consumer products
(customizable wearable devices), emergency response (low-cost,
mass-manufacturable robotic systems), and space exploration
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(customizable, made-to-order solutions tailored to emerging mis-
sion requirements).

13. Al-Driven Design of Meta-Scaffolds

Masoud Shirzad, Dageon Oh, Seung Yun Nam”

13.1. State of the Art

In today’s rapidly evolving world, conventional engineering
approaches often fall short in addressing complex challenges.
Interdisciplinary strategies, particularly in intricate fields such
as biomedical engineering and life sciences, offer a promising
pathway for developing effective engineering solutions for mul-
tifaceted problems.’>” One such innovative solution is the crea-
tion of tissue engineering scaffolds with complex and predefined
structures, which hold great potential in addressing the chal-
lenges of repairing damaged organs. These scaffolds must not
only provide an appropriate environment for proper cell interac-
tion and adhesion but also support external loads and ensure the
diffusion of nutrients to the implanted site.[?**

Figure 21. Overview of using Al algorithms for designing meta-scaffolds.
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To address the requirements, meta-scaffolds with diverse
internal architectures have been developed.”**) Owing to their
architectural structures, meta-scaffolds exhibit adaptable physical
and mechanical properties.*>*!) This adaptability enables the
biomimicry of human tissues, a feat unattainable with conven-
tional design approaches. Furthermore, meta-scaffolds with tai-
lored internal structures enhance the longevity of scaffolds under
various static and dynamic loading conditions.?**! However,
the processes of designing, biomimicking, and optimizing
meta-scaffolds are highly time-intensive and require substantial
effort. While some studies have utilized the finite element
method (FEM) to evaluate the physicomechanical properties of
scaffolds, this approach is constrained by its time-consuming
nature and the limited number of variables it can
accommodate.!?**!

To tackle these challenges, Al-based strategies based on
ML algorithms have been explored to accelerate the design
and evaluation of meta-structures. These algorithms operate
within a framework that uses a training dataset, allowing the
model to learn targeted properties and make comprehensive pre-
dictions to achieve the desired objectives.*”) An overview of using
Al algorithms for designing meta-scaffolds is displayed in
Figure 21.
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13.2. Scientific Challenges and Technical Limitations

The integration of AI and ML in the design of meta-scaffolds
offers significant potential for fabricating highly precise struc-
tures with optimized physicomechanical properties. However,
limited fabrication resolution and the low printability of complex
meta-structures remain critical challenges, restricting their wide-
spread applications in tissue engineering, particularly in achiev-
ing the appropriate pore size and shape. These fabrication issues
stem from inherent limitations in manufacturing techniques.
For instance, while EBB offers advantages such as material ver-
satility and ease of use, it still faces challenges in achieving the
high resolution required for intricate meta-structures. Moreover,
challenges related to biomaterials and the difficulty of identifying
effective methods for incorporating newly developed materials
into scaffold fabrication pose additional obstacles in the
manufacturing of meta-scaffolds.****!

Additionally, the aforementioned challenges further compli-
cate the biomimicry of the physical and mechanical properties
of native tissue, which often exhibit gradient or hierarchical
structures. Failure to accurately replicate these physicomechan-
ical properties can lead to significant issues, such as stress shield-
ing or reduced durability. Although AI has shown promise in
predicting scaffold performance, its effectiveness depends on
large, high-quality datasets, and the implementation of multiob-
jective optimization frameworks capable of balancing competing
conditions and requirements.”**2**! For instance, meta-scaffolds
must not only demonstrate appropriate physicomechanical
behavior but also exhibit controlled degradation rates and sup-
port critical biological functions, including cell adhesion, forma-
tion, and proliferation. Optimizing all these parameters
simultaneously is computationally intensive, often requiring
extensive datasets and prolonged processing time.**%! In addi-
tion to the complexity of multiobjective optimization in the fab-
rication of meta-scaffolds, most advanced ML algorithms rely on
greedy strategies to predict predefined outputs.?*”*! It is
important to note that many meta-structures are designed using
repetitive 2D or 3D unit patterns. However, in interface prob-
lems involving various meta-structures, the demand for extensive
input datasets can become even more challenging, further com-
plicating the optimization process.

13.3. Advances in Science and Technology to Meet the
Challenges

The implementation of ML across various fields presents signifi-
cant challenges, particularly due to the data-intensive require-
ments of advanced ML algorithms. Additionally, the design
and fabrication of meta-scaffolds using suitable materials and
structural configurations introduce further complexities.**!
Consequently, addressing both challenges simultaneously poses
a substantial burden for researchers, often discouraging engage-
ment with such multiobjective optimization problems. However,
several strategies have been proposed to facilitate the use of
Al-based approaches in the design and fabrication of biocompat-
ible meta-scaffolds.

Bioinspired strategies often provide optimal approaches to var-
ious biomedical problems. Mimicking natural tissues not only
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enhances the physiomechanical properties of scaffolds but also
improves their biological performance. However, the fabrication
of such bioinspired structures requires high-resolution
manufacturing techniques. In this regard, photo- or laser-based
fabrication methods offer a promising solution, enabling the
precise construction of complex 3D structures with high
resolution.***! Advancing these fabrication techniques necessi-
tates close collaboration between academia and industry to
establish a highly precise, efficient, and scalable manufacturing
process.

It is worth noting that the selection of biocompatible materials
for tissue engineering scaffold fabrication remains limited for use
in the precise manufacturing process. Consequently, one of the
most critical challenges in this field is the development of novel
composite materials. For instance, enhancing the biocompatibility
of conventionally available resins presents a promising
strategy. Additionally, the development of new printable materials
offers another viable approach for advancing the fabrication of
meta-scaffolds with tunable physicomechanical properties.***%**!

Beyond advancements in fabrication methods, several strate-
gies can facilitate the integration of ML approaches in the devel-
opment of meta-scaffolds. The FEM is a widely utilized and
reliable technique for evaluating the mechanical and physical
properties of scaffolds. This method can significantly accelerate
the generation of sufficient input data for advanced ML models.
Additionally, hybrid ML approaches have gained considerable
attention across various fields. These methods can substantially
reduce errors in ML predictions while mitigating the dependency
on large input datasets.?*!] Furthermore, ML methods such as
the attention-based diffusion model enable both property predic-
tion and inverse design of hierarchical structures—common in
natural tissues—within a single framework, thereby reducing
data requirements by exploiting structural patterns and physics-
informed behavior. Likewise, a variational autoencoder-long
short-term memory (VAE-LSTM) approach compresses complex
designs into low-dimensional latent spaces, facilitating the gener-
ation and optimization of new structures beyond the initial dataset.
These methods illustrate how generative and representation-
learning strategies can lower data barriers in scaffold research,
advancing intelligent design and rapid prototyping. Figure 22 illus-
trates potential solutions for reducing the complexity of Al-driven
challenges in meta-scaffold fabrication.[2*¢2*7]

13.4. Summary and Outlook

In conclusion, meta-scaffolds represent a promising and innova-
tive approach for the fabrication of reliable tissue engineering
scaffolds with desirable physicomechanical behavior. Al-based
approaches can extensively accelerate the advancement of this
concept within the field of biomedical engineering. However,
there are still challenges such as large input datasets, the limited
availability of suitable biomaterials, and the resolution con-
straints of current fabrication techniques, which can hinder
the development of meta-scaffolds with Al-based methods.
However, emerging technologies and the development of
advanced strategies hold the potential to overcome these limita-
tions and enable the fabrication of applicable meta-scaffolds with
tailored mechanical, physical, and biological characteristics.
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Figure 22. Future solutions to facilitate the applications of ML in the fabrication of meta-scaffolds.

14. Al-Enhanced Development of 3D Bioprinting

Amedeo Franco Bonatti, Irene Chiesa, Gabriele Maria Fortunato,
Giovanni Vozzi, Carmelo De Maria

14.1. State of the Art

The possibility of exploiting AM to (bio)print tissues and even
whole organs has recently gained traction both at academic
and industrial level. A plethora of papers and patents are being
published every year on the topic of bioprinting (defined as the
use of AM to print biomaterials, cells, and biomolecules into bio-
logically active constructs),**® while several companies currently
operate in the market, mainly selling bioprinters and materi-
als."*"! From a technological standpoint, there has been a trend
to use standard AM techniques tailored to the constraints of proc-
essing more delicate biomaterials. Among these techniques, the
most used include EBB, IJB, and LAB. EBB, currently the most
prevalent method in bioprinting, operates by extruding materials
from a syringe-like reservoir through a needle, using mechanical,
pneumatic, or screw-driven forces, and deposits them onto a
printing plate. Its popularity stems from the versatility and ease
of use, as it can process hydrogels and pastes with a wide window
of viscosities. IJB encompasses methods that jet droplets of lig-
uid inks onto a substrate. Different modes of jetting actuation are
currently being used, including thermal, piezoelectric, and
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valve-based approaches. In the laser-induced forward transfer
(LIFT) technology, droplets of bioink are propelled onto a collec-
tor by laser energy.**”! Finally, LAB techniques use light to
enable material processing, including vat photopolymerization,
which solidifies photosensitive resins layer-by-layer.

14.2. Scientific Challenges and Technical Limitations

Bioprinted constructs have successfully replicated various tis-
sues, including bone, cartilage, and skin, and have find applica-
tions in in vitro modeling of physiological or pathological tissues,
drug screening, and even cosmetics.*" However, the use of
these constructs for transplantation purposes still remains a
major challenge, with only a few clinical trials currently active
in the world and only at the recruiting stage.”” The lack
of quality control procedures to manufacture high quality prod-
ucts with low batch-to-batch variability represents one of the
major hurdles limiting the clinical translation of these promising
results.

In the current era of pervasive Al, where these models are
embedded in almost every aspect of our lives, bioprinting serves
as no exception. Although the field is relatively young, frontier
examples of its application to bioprinting have already been set
out and promise to accelerate the pathway to clinical translation
by improving material screening and automatizing quality control
procedures.[*>#€!
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14.3. Scientific Pathways and Technological Developments

Examples on the application of Al to bioprinting for quality con-
trol can be grouped in three main categories (as summarized in
Figure 23): i) pre-process optimization, where Al is used to opti-
mize the process before the production of the final construct,
effectively reducing the trial-and-error typical in the preliminary
phases of bioprinting; ii) in-process monitoring, by embedding
sensors (e.g., cameras, temperature, pressure) in the printer and
using Al models to understand from these data if the printing
process is going well or not in real-time; iii) post-process quality
assessment, to evaluate after printing the quality of the construct
based on some relevant quality features (e.g., overall shape fidel-
ity, biological performance).

In the context of pre-process quality control, Al can build
predictive models able to elucidate the complex interrelations
between operating parameters/material properties and: i) shape
fidelity quality features, including pore size and line width in
EBB,>*" ii) construct properties like compressive modulus,**%
and iii) biological performance, like cell viability.**!
For example, Dai et al. proved that the successive use of

design-of-experiments (DoE) and ML algorithms could speed
up the development of new materials for EBB. In their work,
DoE was used to narrow down the number of possible combina-
tions to test poly(ethylene glycol)diacrylate (PEGDA)-based com-
posite inks, while an ML regression model (namely, a multilayer
perceptron) was effectively used to predict the pore size starting
from the input air pressure, printing speed, and the component
concentration ratio of the inks (as selected by the DoE proce-
dure).”>¥ Interestingly, Nadernezhad and Groll showed how
ML could be used to predict printability based on more complex
rheological data in EBB. Different hyaluronic acid-based inks were
characterized rheologically (i.e., flow curve, amplitude sweep) and
through printing tests (i.e., printing of rectangular meshes with
varying line spacing and needle diameters), effectively building
an extensive dataset correlating rheology to printability results.
The dataset was then used to train and test a random forest clas-
sifier algorithm which resulted in F1-scores > 90%.°" Although
successful, these approaches require extensive and curated dataset
which are time consuming to produce. Interestingly, a more com-
prehensive dataset of material and construct properties have been
recently compiled by Rafieyan et al. The authors mined data

Figure 23. Summary of the examples for quality control in bioprinting. In a), an example of building predictive ML models for pre-process ink composi-
tion and printing parameters optimization. Reproduced with permissions.**l Copyright 2024, Wiley-VCH GmbH; In b), an example of using a CNN
model for real-time monitoring of the EBB process. Reproduced with permissions.”>”! Copyright 2025, Wiley-VCH GmbH; In c), an example of using the
ML to predict the vitality of organoids after extrusion printing. Adapted with permissions.”**! Copyright 2025, MDPI.
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related to EBB constructs from literature, building a dataset of
more than 1000 constructs with 60 biomaterials and 49 different
cell lines. Both supervised and unsupervised models were then
trained on these data to draw insights on the correlation between
printing parameters and cell viability after printing,*>*!

More complex ML models based on DL techniques have
shown promising results for the in-process monitoring applica-
tion. In this regard, image/video data represent the most com-
mon data source for training and testing these models, as
cameras can be easily mounted in different locations inside
the bioprinter, and the data acquisition process is straightfor-
ward. For example, Jin et al. used a pneumatic extrusion bio-
printer to fabricate two-layer constructs with varying infill
patterns (i.e., grid, rectilinear, gyroid, honeycomb). Each pattern
was printed with a different extrusion speed, imaged from a top-
looking view, and the resulting images were manually labelled
depending on their quality. This dataset was subsequently used
to train and evaluate several ML models for classification, includ-
ing a DL CNN model.”**) In another recent example, Kelly et al.
customized an extrusion printer by adding a camera below the
printing plate. The collected images of the printed lines were
labelled based on the quality (i.e., good, under- or over-extruded)
and the resulting data merged with synthetic data coming from
Blender simulations. A CNN model was then trained and imple-
mented in a closed-loop extrusion control system able to vary the
flowrate in real-time, thus correcting possible printing errors
during printing.”*”! A major limitation of these works lies in
the use of simple, almost two-dimensional patterns which are
not representative of the final three-dimensional construct shape.
To this end, Bonatti et al. developed a comprehensive video data-
set by recording the printing process from a front view. Each
video corresponded to a print with a different combination of
parameters, including layer height, flow, bioprinter configura-
tion (pneumatic versus piston-actuated extrusion), ink color.
Two main errors were introduced resulting from a nonoptimal
printing parameters combination, including under- and over-
extrusion. A CNN model was then trained and tested on the data-
set, with the aim of monitoring the printing process online to
stop the print if an error occurred before completion, to save time
and reduce material waste.*>®!

Finally, Al can automatize the post-print quality assessment by
analyzing the biological performance of bioprinted constructs.
Image data of printed cells can provide insights on the cell viability,
like in the recent example from Sheikh et al. The authors printed
organoids (i.e., 3D multicellular aggregates of one or more cell
types) with EBB and imaged them at a phase-contrast microscope
after three days of culture. The images were fed to a CNN model
which was tasked to infer the cell viability.”*” Furthermore, seg-
mentation algorithms are particularly useful to automatically
extract quality features related to cells and then use these data
for other downstream tasks. For example, Yao et al. used GANs
for the automatic segmentation of cell nuclei in 3D scaffolds. They
printed multilayer PCL constructs, seeded them post-printing, and
used the resulting image dataset to train the network. The model
performance was compared with other segmentation tools (e.g.,
CellProfiler), showing a comparable performance across multiple
cell types. Finally, the authors showed how quantitative data related
to adhesion and proliferation could be extracted from the seg-
mented images to infer construct-cell interaction.**”
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14.4. Summary and Outlook

In conclusion, Al represents an enabling technology to imple-
ment automatic quality control procedures throughout the
whole bioprinting process, potentially accelerating the transla-
tion of the technology to the clinics, lifting researchers from
time- and material-consuming optimization work and allowing
them to focus on the actual application instead of the
manufacturing process. Even though the results are promising,
the adoption of Al in bioprinting is still at an early research
stage, with applications mainly limited to controlled laboratory
settings. Indeed, the combination of these two technologies is at
an early development stage, taking traction in the literature only
in recent years.*> To stimulate the adoption in the bioprinting
workflow and fully to unlock the transformative potential of bio-
printing for the patient health, future endeavors should focus
on i) Al tools testing on other technologies apart from EBB,
and on their combination, ii) focusing more on the post-process
evaluation, which is currently understudied, and iii) creating
curated, open-source and large-scale datasets, which can be
used to benchmark different AI tools.

15. Adaptive Metamaterials by Al and 4D Printing

Mahdi Bodaghi”

15.1. State of the Art

Mechanical metamaterials fabricated via 4D printing are emerg-
ing as transformative platforms for adaptive, multifunctional sys-
tems. These architected materials, often composed of periodic or
hierarchical unit cells, exhibit unconventional behaviors such as
negative Poisson’s ratio, tunable stiffness, and shape memory.
Figure 24 illustrates their functional behavior, structural topology,
stimulus types, and applications across sectors. Enabled by stim-
uli-responsive materials such as shape memory polymers (SMPs)
and liquid crystal elastomers (LCEs), 4D-printed metamaterials
can undergo programmable mechanical transformations when
exposed to external stimuli like temperature, magnetic fields,
or humidity, enabling applications in soft robotics, aerospace
actuators, and impact-mitigating systems.***%? However, the
complexity of nonlinear thermo-mechanical behaviors, geometric
intricacy, and multistimulus actuation makes design optimization
computationally expensive and experimentally intensive. Brute-
force FEM simulations struggle to resolve large design spaces
spanning time-dependent, path-dependent responses. In
response, Al is enabling transformative advances in the model-
ing, inverse design, and process control of such systems.
Forward ML models, including CNNs, gradient boosting
regressors, and GNNs, can predict stress—strain curves, activa-
tion responses, or energy dissipation across a spectrum of geom-
etries and materials. Inverse design is advancing via VAEs and
conditional GANs, generating microstructures that satisfy
predefined metrics such as high recovery ratios or broadband
damping.#221:2621  Emerging data-driven surrogates are
extending beyond elasticity to model complex thermo-viscoelastic
behaviors, often trained on FEM data. However, phase-
transition-aware, elasto-plastic, and fatigue-calibrated models
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Figure 24. Multidimensional classification of Al-driven 4D-printed mechanical metamaterials based on functional performance, structural topology,

actuation stimuli, and target applications.

for smart metamaterials remain an open research frontier.*’!
Multiphysics-informed surrogates are expected to play a critical
role in validating Al-generated geometries for manufacturability,
actuation reliability, and cyclic durability. Al's impact also
extends to process optimization. RL is applied to path planning,
extrusion control, and multiphysics actuation sequencing, partic-
ularly under heat-induced or magnetic stimuli.!*’! High-fidelity
datasets are being constructed using molecular dynamics
(MD), DTs, and coupled thermomechanical simulations.

The convergence of Al and 4D printing heralds a new generation
of intelligent metamaterials, systems adaptive in both function and
design evolution. As open-source databases expand and explainable
Al gains traction, the synergy will unlock programmable, sustain-
able material platforms for next-generation engineering.

15.2. Scientific Challenges and Technical Limitations

Despite major strides, integrating Al into 4D printing of
mechanical metamaterials presents persistent scientific, compu-
tational, and practical challenges.

15.2.1. Realistic Modeling of Smart Materials

Stimuli-responsive materials like SMPs exhibit nonlinear, time-,
strain-, and temperature-dependent behaviors, including elasto-
plasticity, visco-elasticity, and dissipating hysteresis.** Most Al
models rely on elasticity-based assumptions or simplified FEM
solvers, which fail to capture coupled nonlinear multiphysics
response or phase transition mechanics. Without physics-aware
surrogates, Al-generated designs often fail to suggest a right pro-
gramming protocol, and to predict shape recovery, actuation,
shape-memory fatigue, and time-dependent responses.*”)

15.2.2. Lack of Integrated Co-Optimization Frameworks

Most studies isolate structure, material, programming, or printing
process during design. Co-optimizing (Figure 24) across all levels,
geometry, smart materials, programming, and actuation profiles,
and print parameters, is rare.?*"! A practical design must consider
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fabrication path, stimuli placement, and topology®*” simulta-
neously, yet no framework currently enables this at scale.[*”

15.2.3. Limitations of Generative Models

Generative models such as GANs, VAEs,***! and generative
inverse design networks (GIDNs) have enabled the creation of
novel metamaterial topologies. However, physical feasibility
and printability remain significant challenges.*** For example,
Voronoi-based conditional GANs (CGANs) and PatchGANs can
produce geometries that violate mechanical or manufacturing
constraints, often requiring separate solvers to verify stiffness,
Poisson’s ratio, or printability.**"2** While GIDNs improve per-
formance through active learning and backpropagation-based
optimization, they still require extensive retraining for new mate-
rial systems, stimulus types, or boundary conditions.[2*

15.2.4. Dataset Scarcity and Standardization

Current materials databases such as AFLOW, Materials Project
(MP), and NOMAD primarily provide static properties like elastic
constants and band structures, lacking the dynamic, multisti-
muli, time-resolved data essential for 4D-printed metamateri-
als.**12%?] Datasets incorporating cyclic actuation, fatigue, and
programming-response history remain rare and nonstandar-
dized. This limits the generalization ability of AI models trained
on such data and hinders reproducibility. High-throughput pipe-
lines integrating FEM, MD, and experimental data are needed to
close this gap.

15.2.5. Lifecycle Durability and Multistimuli Actuation

4D-printed metamaterials often experience a drop in thermome-
chanical properties under repeated thermo-mechanical
cycling.?®*! SMP-based devices face reduced recovery ratios,
drift, or failure modes that are poorly predicted by current Al
models. Long-term fatigue, creep, and shape recovery/fixity loss
are rarely included in inverse design loops.
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15.2.6. Explainability and Industrial Trust

Most Al models in 4D printing are black boxes, limiting adoption
in regulated fields. PINNs and ontology-based models aim to
embed physical laws and design logic for interpretability
DIMA.['21:266:267] Ontologies help formalize programming logic,
while PINNs offer consistent predictions under multiphysics
stimuli. Yet, both approaches require further validation for
time-dependent, multistimulus applications.

15.3. Scientific Pathways and Technological Developments

Addressing the current limitations of Al-driven 4D printing of
mechanical metamaterials requires coordinated progress across
model architectures, data infrastructure, real-time control, and
interpretability.

15.3.1. Physics-Informed Al for Reliable Design

To enhance physical consistency and generalizability, research-
ers are adopting PINNs. These can embed governing laws
(e.g., elasto-plasticity, shape memory effects) into neural frame-
works, enabling accurate modeling of nonlinear, stimulus-
coupled Dbehaviors in shape memory-based metamaterials.
Recent applications have demonstrated PINNs’ ability to predict
deformation and stress distribution with far fewer samples than
black-box networks. For instance, PINNs could recently model
nonlinear heat transfer with noisy boundaries and complex geom-
etries, showing promise for inverse mechanics in SMPs.[**®

15.3.2. Multistimuli Datasets and DT Integration

The development of large-scale, multitopology, multistimuli
datasets could enable better Al training and validation. Coupled
with physics-based DTs,"** and infrastructure-level cloud collab-
oration platforms,**® these datasets could capture multistimuli
actuation, and thermo-mechanical and shape-memory fatigue. A
cloud-connected DT pipeline could generate smart metamateri-
als coupled with feedback-based optimization.

15.3.3. RL for Adaptive Process Control

RL is now being applied to dynamically control extrusion
paths, thermal cycles, and actuation timing in 4D printing.
For instance, RL enhanced adaptive control in multimaterial
printing with feedback loops.*”” This allows optimization in
real-time, particularly for soft robots and SMP lattice generation.

15.3.4. Explainable and Neuro-Symbolic Al

Explainability remains a major hurdle for AI adoption in safety-
critical 4D printing applications. Neuro-symbolic AI frameworks,
combining neural networks with symbolic reasoning and design
ontologies, are gaining traction for interpretable, rule-based deci-
sion making. Researchers!’!! recently demonstrated their utility
in automating 4D printing workflows while preserving traceabil-
ity and logic-based constraints. These hybrid systems improve
trust and transparency, particularly when embedded with
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geometric rules and stimulus-response logic, and represent a
promising direction for bridging data-driven and physics-
informed paradigms.

15.3.5. Applications and Impact

Al-driven 4D printing has near-term industrial potential in
aerospace (morphing wings, shock dampers), biomedicine
(self-deploying scaffolds), and automotive energy absorbers.
Societal benefits include customizable prosthetics, soft robotic
implants, and lightweight disaster-resilient structures.™*’!
Commercialization is expected to accelerate with maturing digi-
tal threads and certification frameworks for smart metamaterials.

15.4. Summary and Outlook

Al is transforming the design and deployment of 4D-printed
mechanical metamaterials by enabling data-driven modeling,
inverse design, and adaptive process control. This chapter has
outlined how stimuli-responsive materials, such as shape mem-
ory polymers and LCEs, pose complex, nonlinear challenges that
demand new Al frameworks trained on multiscale, multiphysics
data. Current methods are limited by elasticity-based assump-
tions, black-box models, and fragmented workflows that overlook
cyclic durability, co-programming, and actuation constraints.
Through critical analysis of the field’s current barriers, the need
for physics-informed surrogates, RL for real-time optimization,
and structured DT-integrated datasets was highlighted. The
promise of interpretable and neuro-symbolic AI offers a path
to trusted, certifiable solutions, especially in safety-critical appli-
cations. This chapter contributes to the AI2AM roadmap by iden-
tifying the essential advances needed to fully leverage Al in the
4D printing of intelligent metamaterials. It proposes actionable
directions across modeling, fabrication, and validation, while
emphasizing the importance of reproducibility, explainability,
and domain-integrated knowledge. As this subfield evolves, it
will enable programmable, multifunctional, and sustainable
material systems tailored to the demands of aerospace, automo-
tive, healthcare, robotics, and beyond.

Discussions and Future Directions

Within the AI2AM framework, developments in Design and
Strategies collectively mark a transition from isolated design
innovations to an integrated design ecosystem where Al
actively mediates between creativity, physics-based rigor, and
manufacturing feasibility. By embedding hybrid physics—AI mod-
els, generative design tools, neural slicers, and ontology-guided
workflows into AM pipelines, AI2AM can help overcome persis-
tent challenges such as interfacial incompatibility, anisotropic
stress prediction, and the gap between conceptual design and
printable models. The result is a more adaptive, creative, and cal-
culated design process that not only accelerates the discovery of
new material-process—geometry combinations but also ensures
their robustness through validated integration to AM. This posi-
tions AI2AM as a driver of a new design paradigm in AM—one
where automated ideation, real-time optimization, and knowledge-
based constraints converge to deliver high-performance and
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manufacturable components. In doing so, AI2AM empowers
engineers and designers to move beyond trial-and-error methods
toward an Al-mediated strategy for AM design.

AI2AM’s role in Monitoring and Quality Control framework
also is highlighted via a transformative pathway toward intelligent,
adaptive, and autonomous AM systems. Al-enhanced DTs and
multimodal monitoring provide unprecedented visibility into
the printing process, while real-time defect detection and struc-
tural validation ensure quality assurance without the need for
extensive post-processing. CV and hybrid AI approaches bridge
the gap between raw sensor data and actionable input, ensuring
that deviations are not only detected but contextualized within
physics-informed frameworks. The integration of these elements
into Al-controlled closed-loop systems transforms AM from a
static, parameter-defined process into a dynamic, self-correcting
platform capable of learning from each build. This positions
AI2AM as a critical enabler of industrial scalability, end-user
friendliness, safety-critical adoption, and sustainable manufactur-
ing. By integrating sensing, simulation, validation, and control,
AI2AM advances monitoring and quality control from merely
quality checks to a unified, autonomous intelligence layer—laying
the groundwork for robust product development pipelines.

In the context of Product Developments, the AI2ZAM advances
showcase how Al can transform product development in AM by
providing intelligence at every stage of the innovation cycle—
from design and material discovery to fabrication and functional
deployment. By embedding Al-driven design and adaptive
manufacturing process control into soft robotics, AI2ZAM ensures
reliable, application-ready devices for medicine, agriculture, and
emergency response. In tissue engineering, AI2AM accelerates
the design and optimization of meta-scaffolds and bioprinted
constructs, making personalized implants and regenerative ther-
apies more attainable by addressing quality assurance challenges.
Meanwhile, in advanced engineering domains, it enables the cre-
ation of adaptive metamaterials that evolve under real-world con-
ditions, meeting the rigorous demands of aerospace, automotive,
and defense applications. Overall, these contributions position
AI2AM as the critical catalyst for moving AM beyond experimen-
tal prototypes to high-performance, certifiable, and scalable prod-
ucts. By unifying predictive design, adaptive control, and
functional validation under one framework, AI2AM empowers
AM industry to deliver informed, application-specific solutions
that are not only manufacturable but also dynamically adaptable
to changing requirements, thereby reshaping the landscape of
product innovation.

Despite the clear promise of AI2AM, many solutions remain
at early stages, with limitations that constrain their immediate
industrial deployment. Challenges arise not only from technical
readiness but also from economic and infrastructural barriers
that hinder widespread adoption. High computational costs,
the need for specialized hardware and sensors, and the lack of
standardized datasets or interoperable frameworks increase
entry barriers for industry, particularly for small- and medium-
sized enterprises. Al-driven defect detection often suffers from
data scarcity, lack of standardized benchmarks, and limited gen-
eralizability across different AM processes. Real-time structural
validation and closed-loop control face challenges in computa-
tional efficiency and integration with legacy hardware.
Al-enhanced generative design tools, while powerful for
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creativity, often struggle to output manufacturable, ready-to-print
geometries. Nonetheless, notable progress has been made
toward practical adoption. Commercial platforms such as EOS
already employ Al-driven monitoring systems integrated with
in situ sensors to improve defect detection and part qualification,
while companies like HP leverage data-driven closed-loop cali-
bration in their Multi Jet Fusion systems to optimize consistency
and throughput. In design, Autodesk’s Fusion 360 and
nTopology incorporate Al-augmented generative approaches that
are being used in aerospace and automotive industries for light-
weighting and lattice optimization. Bioprinting companies such
as CELLINK and Organovo are exploring Al-assisted print
parameter optimization to enhance cell viability and reproduc-
ibility in biomedical applications. Despite these advances, wide-
spread industrialization is still limited by economic barriers such
as the high cost of Al infrastructure, proprietary restrictions on
data sharing, and the need for workforce reskilling.
Encouragingly, collaborative initiatives—such as the develop-
ment of open-source datasets, cloud-based Al integration to
reduce hardware costs, and industry—academia pilot programs
—are emerging to address these bottlenecks. As these pathways
mature, they are expected to lower adoption costs, improve trust
in Al-driven workflows, and accelerate the translation of AI2AM
from experimental demonstrations into sustainable industrial
practice over the coming years.
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